[1]
Yang Wencai, Theory and Methods in Geophysical Inversion, Geological Publishing House, Beijing, (1997).
Google Scholar
[2]
Yang Wencai, Shi Zhiqun, Hou Zunze, Cheng Zhenyan, Discrete wavelet transform for multiple decomposition of gravity anomalies [J], Chinese Journal of Geophysics, 2001, 44 (4), 534 - 541.
DOI: 10.1002/cjg2.171
Google Scholar
[3]
Hou Zunze, Yang Wencai, Liu Jiaqi, Multiscale inversion of the density contrast within the crust of China, Chinese Journal of Geophysics, 1998, 41 (5): 651 - 656.
Google Scholar
[4]
He Jishan, Wen Peilin, Xiao Bing et al, Application of wavelet analysis in geophysical prospecting[J], The Chinese Journal of Nonferrous Metals, 1997, 7(4): 14 -19.
Google Scholar
[5]
Yang Yushan, Li Yuanyuan, Liu Tianyou et al, The differential characteristic of the wavelet details and its application in fault analysis of gravity field [J], Geology and Prospecting, 2003, 39 (1): 41-44.
Google Scholar
[6]
Yang Yushan, The differential characteristic of the wavelet details and its application in fault analysis of gravity field [J], Geology and Prospecting, 2003, 39(1): 41-44.
Google Scholar
[7]
Li Jian, Zhou Yunxuan, Xu Huiping, The selection of wavelet generating functions in data-processing of gravity field [J], Geophysical and Geochemical Exploration, 2001, 25(6): 410-417.
Google Scholar
[8]
Li Zongjie, Yang Lin, Wang Qincong, Applying wavelet transform in potential field data processing [J], Geophysical Prospecting for Petroleum Sponsor, 1997, 36(3): 70-78.
Google Scholar
[9]
Li Zongjie, Yang Lin, Wang Qincong, Application of the wavelet transform in potential field data processing [J], Geophysical Prospecting for Petroleum Sponsor, 1997, 36 (2): 86-93.
Google Scholar
[10]
Cand`es E J, Demanet L, Donoho D L, et al. Fast discrete curvelet transforms. USA Caltech: Applied and Computational Mathe-matics, California Institute of Technology, (2005).
Google Scholar
[11]
Cand`es E J, Donoho D L. New tight frames of curvelets and optimal representations of objects with piecewise C2 singulari-ties. Comm Pure Appl Math, 2004, 57(2), 219-266.
DOI: 10.1002/cpa.10116
Google Scholar
[12]
Cand`es, E. J. and F. Guo, New multiscale transforms, minimum total variation synthe-sis: Applications to edge-preserving image reconstruction. Signal Processing, 2002, 1519–1543.
DOI: 10.1016/s0165-1684(02)00300-6
Google Scholar
[13]
Cand`es, E. J., J. K. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 2006b, 59, 1207–1223.
DOI: 10.1002/cpa.20124
Google Scholar
[14]
Cand`es, E. J., L. Demanet, D. L. Donoho, and L. Ying, Fast discrete curvelet transforms: SIAM Multiscale Modeling and Simulation, 2006a , 5, 861–899.
DOI: 10.1137/05064182x
Google Scholar
[15]
Candes E J, DemanetL, Donoho D L, et al. Fast discrete curvelet transforms[J]. Multiscale Modeling and Simulation, 2006, 5(3), 861-899.
DOI: 10.1137/05064182x
Google Scholar
[16]
Herrmann F J, Wang D L, Hennenfent, et al. Curvelet based seismic data processing: a multiscale and nonlinear approach. Geophysic, 2008, 73(1), A1.
DOI: 10.1190/1.2799517
Google Scholar
[17]
Hennenfent, G. and F. J. Herrmann, 2006a, Application of stable signal recovery to seismic interpolation: Presented at the SEG International Exposition and 76th Annual Meeting.
Google Scholar