[1]
S. Furui, History and development of speech recognition, Speech Technology, no. doi: 10. 1007/978-0-387-73819-2-1., (2010).
Google Scholar
[2]
S. V. Chapaneri, Spoken digits recognition using weighted MFCC and improved features for dynamic time warping, International Journal of Computer Application, vol. 40, no. 3, pp.6-12, (2012).
DOI: 10.5120/5022-7167
Google Scholar
[3]
R. V. Cox, C. A. Kamm, L. R. Rabiner, J. Schroeter and J. G. Wilpon, Speech and language processing for next-millennum communications services, Proc. of the IEEE, vol. 88, no. 8, pp.1314-1337, (2000).
DOI: 10.1109/5.880086
Google Scholar
[4]
N. Y. Talking, Powerful New Language Tools Leverage AI, IEEE Intelligent Systems, vol. 27, no. 2, pp.2-7, (2012).
Google Scholar
[5]
G. E. Hinton, S. Osindero and Y. W. Teh, A Fast Learning Algorithm for Deep Belief Nets, Neural Computation, vol. 18, no. 7, pp.1527-1554, (2006).
DOI: 10.1162/neco.2006.18.7.1527
Google Scholar
[6]
G. E. Dahl, D. Yu, L. Deng and A. Acero, Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition, IEEE Trans. on Audio, Speech, and Language Processing, vol. 20, no. 1, pp.30-42, (2012).
DOI: 10.1109/tasl.2011.2134090
Google Scholar
[7]
J. Sun, Y. Sun, K. Abida and F. Karray, A novel template matching approach to speaker-independent arabic spoken digit recognition, in AIS 2012, Aveiro, Portugal., (2012).
DOI: 10.1007/978-3-642-31368-4_23
Google Scholar
[8]
S. Kim, S. Park and W. Chu, An index-based approach for similarity search supporting time warping in large sequence databases, in Data Engineering, 2001 Proc. 17 th Conf. on, Heidelberg, Germany, (2001).
DOI: 10.1109/icde.2001.914875
Google Scholar
[9]
Y. Zhu and D. Shasha, Warping indexes with envelope transforms for query by humming, in SigMOD, San Diego, CA, (2003).
DOI: 10.1145/872757.872780
Google Scholar
[10]
M. Muller, H. Mattes and F. Kurth, An efficient multiscale approach to audio synchronization, in Proc. ISMIR, Victoria, BC, Canada., (2006).
Google Scholar
[11]
Y. Sakurai, M. Yoshikawa and C. Faloutsos, FTW: fast similarity search under the time warping distance, in PODS, Baltimore, Maryland., (2005).
DOI: 10.1145/1065167.1065210
Google Scholar
[12]
P. Papapetrou, V. Athistsos, M. Potamias, G. Kollios and D. Gunopulos, Embedding-based supsequence matching in time-series databases, " ACM Trans. on Database Systems, vol. 36, no. 3, p.17: 1-17: 39, 2011. A. Shanker and A. Rajagopalan, "Off-line signature verification using DTW, Pattern Recognition Letters, vol. 28, pp.1407-1414, (2007).
DOI: 10.1016/j.patrec.2007.02.016
Google Scholar
[13]
Jeong, Y. S., M. K. Jeong and O. A. Omitaomu, Weighted dynamic time warping for time series classification, Pattern Recognition, vol. 44, pp.2231-2240, (2011).
DOI: 10.1016/j.patcog.2010.09.022
Google Scholar
[14]
X. Zhang, J. Sun, Z. Luo and M. Li, Confidence Index Dynamic Ttime Warping for Language-Independent Embedded Speech Recognition, in ICASSP, Vancouver, Canada, (2013).
DOI: 10.1109/icassp.2013.6639236
Google Scholar
[15]
X. Zhang, J. Sun, Z. Luo and M. Li, Merge-weighted Dynamic Time Warping for Language-Independent Speaker-Dependent Embedded Speech Recognition, Journal of Computer Sicence and Techonology, 2013 (submitted).
Google Scholar
[16]
S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev and P. Woodland, The HTK Book (for HTK Version 3. 4), Cambrideg, UK: Cambridge University Engineering Department, 2006, p.349.
Google Scholar
[17]
L. R. Rabiner and B. H. Juang, Fundamentals of Speech Recognition, Englewood Cliffs, New Jersey: Prentice Hall, (1993).
Google Scholar
[18]
C. Levy, G. Linares and P. Nocera, Comparison of Several Acoustic Modeling Techniques and Decoding Algorithms for Embedded Speech Recognition Systems, in Workshop on DSP in Mobile and Vehicular Systems, Nagoya, Japan, (2003).
Google Scholar