Effects of Primary Si and Applied Load on the Dry Sliding Wear Behaviors of Hypereutectic Al-20Si Alloy

Article Preview

Abstract:

The effects of the primary Si phase and applied load on the dry sliding wear behaviors of hypereutectic Al-20Si alloy were investigated. The results show that coarse polygonal and star-like primary Si was refined into fine blocky shape by increasing superheat treatment temperature. The friction coefficient and wear rate significantly decrease after decreasing the size and changing the morphology of primary Si. Moreover, the friction coefficient and wear rate increase with the increase of applied load. Therefore, the wear properties are greatly influenced by the parameters like morphology and size of primary Si as well as applied load.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-87

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.L. Xu, Q.C. Jiang, Y.F. Yang, H.Y. Wang and J.G. Wang: J. Alloys Compd. Vol. 422 (2006), p.1.

Google Scholar

[2] Q.L. Li, T.D. Xia, Y. F Lan, W. J Zhao, L. Fan and P. F Li: J. Alloys Compd. Vol. 577 (2013), p.232.

Google Scholar

[3] A.M.A. Mohamed, A.M. Samuel and F.H. Samuel: Mater. Des. Vol. 30 (2009), p.3943.

Google Scholar

[4] Q.L. Li, T.D. Xia, Y. F Lan, P. F Li and L. Fan: Mater. Sci. Eng. A. Vol. 588 (2013), p.97.

Google Scholar

[5] H.S. Choi and X.C. Li: J. Mater. Sci. Vol. 47 (2012), p.3096.

Google Scholar

[6] H.A. Ardakan, X.C. Liu, F. Ajersch and X.G. Chen: Wear. Vol. 269 (2010), p.684.

Google Scholar

[7] D.K. Dwivedi: Mater. Des. Vol. 31 (2010), p.2517.

Google Scholar

[8] D.K. Dwivedi, T.S. Arjun, P. Thakur, H. Vaidya and K. Singh: J. Mate. Proc. Tech. Vol. 152 (2004), p.323.

Google Scholar

[9] G. Liu, G.D. Li, A.H. Cai and Z.K. Chen: Mater. Des. Vol. 32 (2011), p.121.

Google Scholar

[10] T.M. Chandrashekharaiah and S.A. Kori: Tribology International. Vol. 42 (2009), p.59.

Google Scholar

[11] Q.L. Li, T.D. Xia, Y.F. Lan, W.J. Zhao, L. Fan and P.F. Li: J. Alloys Compd. Vol. 56 (2013), p.25.

Google Scholar

[12] O. Uzun, T. Karaaslan, M. Gogebakan and M. Keskin: J. Alloys Compd. Vol. 376 (2004), p.149.

Google Scholar

[13] H.K. Jung, P.K. Seo and C.G. Kang: J. Mate. Proc. Tech. Vol. 113 (2001), p.568.

Google Scholar

[14] D.H. Lu, Y.H. Jiang, G.S. Guan, R.F. Zhou and Z.H. Li: J. Mate. Proc. Tech. Vol. 189 (2007), p.13.

Google Scholar

[15] Z.W. Chen, W.Q. Jie and R.J. Zhang: Mate. Lett. Vol. 599 (2005), p.2183.

Google Scholar

[16] W.M. Wang, X.F. Bian, J.Y. Qin, S.I. Syliusarenko: Metal Mate. Trans. A, Vol. 31 (2000), p.2163.

Google Scholar

[17] X.F. Bian and W. Wang: Mate. Lett. Vol. 44 (2000), p.54.

Google Scholar

[18] A.S. Anasyida, A. R Daud and M. J Ghazali: Mate. Des. Vol. 31 (2010), p.365.

Google Scholar