[1]
M.Y. Noordin, D. Kurniawan, Y.C. Tang, K. Muniswaran, Feasibility of mild hard turning of stainless steel using coated carbide tool, Int J Adv Manufacturing Technol. 60 (2012) 853-863.
DOI: 10.1007/s00170-011-3656-0
Google Scholar
[2]
P. G. Petropoulos, The effect of feed rate and of tool nose radius on the roughness of oblique finish turned surfaces, Wear. 23 (1973) 299-310.
DOI: 10.1016/0043-1648(73)90019-7
Google Scholar
[3]
A. Devillez, G. Le Coz, S. Dominiak, D. Dudzinski, Dry machining of Inconel 718 workpiece surface integrity. J Mater Process Tech. 211 (2011) 1590– 1598.
DOI: 10.1016/j.jmatprotec.2011.04.011
Google Scholar
[4]
A. Li, J. Zhao, H. Luo, Z. Pei, Z. Wang, Progressive tool failure in high-speed dry milling of Ti-6Al-4V alloy with coated carbide tools, Int J Adv Manuf Technol. 58 (2012) 465–478.
DOI: 10.1007/s00170-011-3408-1
Google Scholar
[5]
C. M. Zhang, W. X. Li, Y. F. Li, Numerical Investigations on the Mechanical Properties of Dry End Milling. Appl Mech Mater. 44 (2011) 1180-1184.
DOI: 10.4028/www.scientific.net/amm.44-47.1180
Google Scholar
[6]
Z. A. Zoya, R. Krishnamurthy, The performance of CBN tools in the machining of titanium alloys, J Mater Process Tech. 100 (2000) 80-86.
DOI: 10.1016/s0924-0136(99)00464-1
Google Scholar
[7]
C. H. Che-Haron, A. Jawaid, The effect of machining on surface integrity of titanium alloy Ti–6% Al–4% V, J Mater Process Tech. 166 (2005) 188-192.
DOI: 10.1016/j.jmatprotec.2004.08.012
Google Scholar
[8]
E. O. Ezugwu, Z. M. Wan, Titanium alloys and their machinability a review, J Mater Process Tech. 68 (1997) 262-274.
Google Scholar
[9]
Information on http: /high-speed-machining. blogspot. com.
Google Scholar
[10]
N. Fang, Q. Wu, A comparative study of the cutting forces in high speed machining of Ti–6Al–4V and Inconel 718 with a round cutting edge tool, J Mater Process Tech. 209 (2009) 4385–4389.
DOI: 10.1016/j.jmatprotec.2008.10.013
Google Scholar
[11]
M. Kikuchi and O. Okuno, Machinability Evaluation of Titanium Alloys, Dent Mater J. 23 (1) (2004) 37-45.
Google Scholar
[12]
H. Yong, Y. Sun, M. Ge, J. Li, J. Su, Milling Experimental Investigation on Titanium Alloy Ti6Al4V under Different Cooling/Lubrication Conditions, Adv Mat Res. 325 (2011) 406-411.
DOI: 10.4028/www.scientific.net/amr.325.406
Google Scholar
[13]
H. Safari, S. Sharif, S. Izman, H. Jafari, High speed dry end milling of Ti-6Al-4V alloy towards nano-scale surface roughness, J Appl Sci Res. 8(11) (2012) 5280-5284.
DOI: 10.4028/www.scientific.net/amm.493.546
Google Scholar
[14]
N. Guillemot, B. K. Mawussi, C. Lartigue, R. Billardon, A first approach to characterize the surface integrity generated by ball-end finishing milling, Int J Adv Manuf Technol. 64(2013) 269-279.
DOI: 10.1007/s00170-012-4017-3
Google Scholar
[15]
V. C. Venkatesh, C.T. Ye, D.T. Quinto, D.E.P. Hoy Performance Studies of Uncoated, CVD-Coated and PVD-Coated Carbides in Turning and Milling, CIRP Ann-Manuf Techn. 40 (1) (1991) 545–550.
DOI: 10.1016/s0007-8506(07)62050-2
Google Scholar
[16]
V. C. Venkatesh, S. Izman, Precision Engineering, McGraw Hill Professional, (2008).
Google Scholar
[17]
E. O. Ezugwu, J. Bonney, R. B. Da Silva, O. Chakir, Surface integrity of finished turned Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies. Int J Mach Tool Manu. 47 (2007) 884–891.
DOI: 10.1016/j.ijmachtools.2006.08.005
Google Scholar
[18]
A. Daymi, M. Boujelbene, S. Ben Salem, B. Hadj Sassi, S. Torbaty, Effect of the cutting speed on the chip morphology and the cutting forces, Arch Comput Mat Sci Surf Eng. 1 (2) (2009) 77-83.
Google Scholar