Direction Finding Using Rotated Long Baseline Interferometer

Article Preview

Abstract:

To reduce the hardware cost of traditional multichannel array or interferometer, a direction finding method using rotated long baseline interferometer (RLBI) has been developed. To overcome the initialization problem, a multiple hypothesis Gauss-Newton (MHGN) algorithm is proposed. It first chooses multiple initial pairs from a pair of PD measurements and then applies each value to the GN algorithm and meanwhile obtains a cost for this initial value. Finally, the ultimate estimate is then picked with the minimum cost. Simulation shows that the proposed method can approach to the Cramer-Rao lower bound (CRLB).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1792-1795

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.M. Peng, F.R. Chang and L.S. Wang. Rotation method for direction finding via GPS carrier phases. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(1): 72-84.

DOI: 10.1109/7.826313

Google Scholar

[2] R. Yang, P.H. Foo, B.P. Ng and G.W. Ng. RF emitter geolocation using amplitude comparison with auto-calibrated relative antenna gains. IEEE Transactions on Aerospace and Electronic System 2011, 47(3): 2098-2110.

DOI: 10.1109/taes.2011.5937285

Google Scholar

[3] R. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280.

DOI: 10.1109/tap.1986.1143830

Google Scholar

[4] R. Roy and T. Kailath. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(7): 984-995.

DOI: 10.1109/29.32276

Google Scholar

[5] C.S. Shieh and C.T. Lin. Direction of arrival estimation based on phase differences using neural fuzzy network. IEEE Transactions on Antennas and Propagation, 2000, 48(7): 1115-1124.

DOI: 10.1109/8.876331

Google Scholar

[6] E. Jacobs and E.W. Ralston. Ambiguity resolution in interferometry. IEEE Transactions on Aerospace and Electronic Systems, 1981, 17: 766-780.

DOI: 10.1109/taes.1981.309127

Google Scholar

[7] R.H. Macphie and Tae Ho Yoon. On using the compound interferometer to obtain the power pattern of a conventional receiving array. IEEE Transactions on Antennas and Propagation, 2009, 10(57): 3356-3359.

DOI: 10.1109/tap.2009.2029380

Google Scholar

[8] S. Kawase. Radio Interferometer for geosynchronous satellite direction finding. IEEE Transactions on Aerospace and Electronic System, 2007, 43(2): 443-449.

DOI: 10.1109/taes.2007.4285345

Google Scholar

[9] D. Laneuville and H. Vignal. Grid based target motion analysis. IEEE Aerospace Conference, 2007, Mar. 3-10, Big Sky, MT. pp.1-7.

DOI: 10.1109/aero.2007.353039

Google Scholar

[10] W.H. Foy. Position location solution by Taylor series estimation. IEEE Transactions on Aerospace and Electronic System, 1976, 12: 187-194.

DOI: 10.1109/taes.1976.308294

Google Scholar

[11] Kay SM. Fundamentals of Statistical Signal Processing, Estimation Theory. Englewood Cliffs, New Jersey: Prentice Hall, (1993).

Google Scholar