Community Detection in Social Networks

Article Preview

Abstract:

Community detection as a branch of social network analysis has been a hot topic in the past decade. This paper reviews the research about the community detection these years and focuses on the community detection relevant classical algorithms as well as the classic real network datasets.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2174-2177

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Milgram S. The small world problem[J]. Psychology today, 1967, 2(1): 60-67.

Google Scholar

[2] Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of modern physics, 2002, 74(1): 47.

Google Scholar

[3] Adamic L A, Adar E. Friends and neighbors on the web[J]. Social networks, 2003, 25(3): 211-230.

DOI: 10.1016/s0378-8733(03)00009-1

Google Scholar

[4] Girvan M, Newman M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12): 7821-7826.

DOI: 10.1073/pnas.122653799

Google Scholar

[5] Newman M E J, Girvan M. Finding and evaluating community structure in networks[J]. Physical review E, 2004, 69(2): 026113.

Google Scholar

[6] Hastie T, Tibshirani R, Friedman J, et al. The elements of statistical learning: data mining, inference and prediction[J]. The Mathematical Intelligencer, 2005, 27(2): 83-85.

DOI: 10.1007/bf02985802

Google Scholar

[7] Garey M R, Johnson D S. Computers and intractability[M]. San Francisco: freeman Publishers (1979).

Google Scholar

[8] Fortunato S, Latora V, Marchiori M. Method to find community structures based on information centrality[J]. Physical review E, 2004, 70(5): 056104.

DOI: 10.1103/physreve.70.056104

Google Scholar

[9] Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical review E, 2004, 69(6): 066133.

Google Scholar

[10] Clauset A, Newman M E J, Moore C. Finding community structure in very large networks[J]. Physical review E, 2004, 70(6): 066111.

DOI: 10.1103/physreve.70.066111

Google Scholar

[11] Donetti L, Munoz M A. Detecting network communities: a new systematic and efficient algorithm[J]. Journal of Statistical Mechanics: Theory and Experiment, 2004, 2004(10): P10012.

DOI: 10.1088/1742-5468/2004/10/p10012

Google Scholar

[12] Donath W E, Hoffman A J. Lower bounds for the partitioning of graphs[J]. IBM Journal of Research and Development, 1973, 17(5): 420-425.

DOI: 10.1147/rd.175.0420

Google Scholar

[13] M. Meila and J. Shi. A random walks view of spectral segmentation. In Proceedings of the 8th International Workshop on Artificial Intelligence and Statistics, pages 92–97, Kaufmann, San Francisco, 2001. Citeseer.

Google Scholar

[14] Fortunato S. Community detection in graphs[J]. Physics Reports, 2010, 486(3): 75-174.

Google Scholar

[15] MacQueen J. Some methods for classification and analysis of multivariate observations [C]/Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. 1967, 1(281-297): 14.

Google Scholar

[16] J.C. Bezdek. Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers, (1981).

Google Scholar

[17] Schuetz P, Caflisch A. Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement[J]. Physical Review E, 2008, 77(4): 046112.

DOI: 10.1103/physreve.77.046112

Google Scholar

[18] Guimera R, Amaral L A N. Functional cartography of complex metabolic networks[J]. Nature, 2005, 433(7028): 895-900.

DOI: 10.1038/nature03288

Google Scholar

[19] Boettcher S, Percus A G. Optimization with extremal dynamics[J]. Complexity, 2002, 8(2): 57-62. S.

Google Scholar

[20] Duch J, Arenas A. Community detection in complex networks using extremal optimization[J]. Physical review E, 2005, 72(2): 027104.

DOI: 10.1103/physreve.72.027104

Google Scholar

[21] Newman M E J. Finding community structure in networks using the eigenvectors of matrices[J]. Physical review E, 2006, 74(3): 036104.

Google Scholar

[22] Wang G, Shen Y, Ouyang M. A vector partitioning approach to detecting community structure in complex networks[J]. Computers & Mathematics with Applications, 2008, 55(12): 2746-2752.

DOI: 10.1016/j.camwa.2007.10.028

Google Scholar

[23] Fortunato S, Barthelemy M. Resolution limit in community detection[J]. Proceedings of the National Academy of Sciences, 2007, 104(1): 36-41.

Google Scholar

[24] Van Dongen S. Graph clustering by flow simulation[D]. Utrecht, Netherlands: University of Utrecht, (2000).

Google Scholar

[25] Arenas A, Díaz-Guilera A, Pérez-Vicente C J. Synchronization reveals topological scales in complex networks[J]. Physical review letters, 2006, 96(11): 114102.

DOI: 10.1103/physrevlett.96.114102

Google Scholar

[26] Lambiotte R, Delvenne J C, Barahona M. Laplacian dynamics and multiscale modular structure in networks[J]. arXiv preprint arXiv: 0812. 1770, (2008).

Google Scholar

[27] Rosvall M, Bergstrom C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences, 2008, 105(4): 1118-1123.

DOI: 10.1073/pnas.0706851105

Google Scholar

[28] Zachary W W. An information flow model for conflict and fission in small groups[J]. Journal of anthropological research, 1977: 452-473.

DOI: 10.1086/jar.33.4.3629752

Google Scholar

[29] Lusseau D. The emergent properties of a dolphin social network[J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2003, 270(Suppl 2): S186-S188.

DOI: 10.1098/rsbl.2003.0057

Google Scholar