Effect of NH4HCO3 Contents on the Microstructure of the Microwave Sintered Porous NiTi Alloys

Article Preview

Abstract:

In this paper, the porous NiTi alloys were prepared by microwave sintering, and the effects of NH4HCO3 contents on the microstructure of the porous NiTi alloys were studied. The microstructure of the porous NiTi alloys was investigated by optical microscopy, Archimedes drainage method, surface roughmeter and X-ray diffraction. The results showed that the porous NiTi alloys were mainly composed of NiTi, Ni3Ti, Ti2Ni and Ni, and the diffraction peaks of the non-equiatomic phases (Ni3Ti, Ti2Ni and Ni) increased with increasing the NH4HCO3 contents. At the same time, the porosity, pore size and surface roughness of the porous NiTi alloys increased with the increase of the NH4HCO3 contents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

264-267

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Bansiddhi, T.D. Sargeant, S.I. Stupp and D.C. Dunand: Acta Biomater. Vol. 4(2008), p.773.

Google Scholar

[2] G. Ryan, A. Pandit and D.P. Apatsidis: Biomaterials Vol. 27(2006), p.2651.

Google Scholar

[3] M. Barrabés, P. Sevilla, J.A. Planell and F.J. Gil: Mater. Sci. Eng. C Vol. 28(2008), p.23.

Google Scholar

[4] B.Y. Li, L.J. Rong and Y.Y. Li: Intermetallics Vol. 8 (2000), p.643.

Google Scholar

[5] S.L. Zhu, X.J. Yang, F. Hu, S.H. Deng and Z.D. Cui: Mater. Lett. Vol. 58(2004), p.2369.

Google Scholar

[6] B. Yuan, C.Y. Chung and Y. Zhu: Mater. Sci. Eng. A Vol. 382(2004), p.181.

Google Scholar

[7] G. Tosun, L. Ozler, M. Kaya and N. Orhan: J. Alloys Comp. Vol. 478(2009), p.605.

Google Scholar

[8] Y. Zhao, M. Taya, Y. Kang and A. Kawasaki: Acta Mater. Vol. 53(2005), p.337.

Google Scholar

[9] D.S. Li, Y.P. Zhang, X. Ma and X.P. Zhang. J. Alloys Comp. Vol. 474 (2009), p. L1.

Google Scholar

[10] A. Bansiddhi and D.C. Dunand: Intermetallics Vol. 15(2007), p.1612.

Google Scholar

[11] A. Bansiddhi and D.C. Dunand: Acta Biomater. Vol. 4(2008), p. (1996).

Google Scholar

[12] T. Aydoğmuş and Ş. Bor: J. Mech. Behav. Biomed. Vol. 15(2012), p.59.

Google Scholar

[13] M. Oghbaei and O. Mirzaee: J. Alloys Comp. Vol. 494 (2010), p.175.

Google Scholar

[14] R. Roy, D. Agrawal, J. Cheng and S. Gedevanishvili: Nature Vol. 399(1999), p.668.

Google Scholar

[15] J. Cheng, D. Agrawal, Y. Zhang and R. Roy: Mater. Lett. Vol. 56(2002), p.587.

Google Scholar

[16] J.C. Hey and A.P. Jardine. Mater. Sci. Eng. A Vol. 188(1994), p.291.

Google Scholar

[17] S.L. Zhu, X.J. Yang, D.H. Fu, et al. Mater Sci Eng A Vol. (2005), p.408.

Google Scholar

[18] Y.W. Gu, H. Li, B.Y. Tay, et al. J. Biomed. Mater. Res. A Vol. 78(2006), p.316.

Google Scholar