Photoluminescence Property of ZnO:Eu Hollow Nanofibers Fabricated by Sputtering Using Electrospun PVP Nanofibers as Templates

Article Preview

Abstract:

Eu-doped ZnO (ZnO:Eu) hollow nanofibers were fabricated by sputtering using electrospun PVP nanofibers as templates. The morphologies, crystal configuration, bonding structures and optical properties of the ZnO:Eu hollow nanofibers were characterized, respectively. Raman results indicate that there are many oxygen vacancies and/or interstitial zinc in ZnO:Eu hollow nanofibers. Effect of Eu-doping on vibrating modes of ZnO is attributed to the change of defects and impurities due to incorporation of europium. The high intensity ultraviolet emission and red luminescence of the ZnO:Eu hollow nanofibers are observed due to the random lasing of near-band-gap emission of ZnO and an f-f transition of the Eu3+ ions, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

352-356

Citation:

Online since:

January 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.A.M. Lima, M.R. Davolos, W.G. Quirino and C. Legnani, Cremona: Appl. Phys. Lett Vol. 90 (2007), p.023503.

DOI: 10.1063/1.2431566

Google Scholar

[2] D. Rüter and W. Bauhofer: Appl. Phys. Lett Vol. 89 (2006), pp.892-894.

Google Scholar

[3] Masao Ichida, T. Wada, M. Kachi, W. Sakamoto, T. Yogo and H. Ando: Phys. Stat. Sol (c) Vol. 3 (2006), pp.3569-3572.

DOI: 10.1002/pssc.200672121

Google Scholar

[4] Atsushi Ishizumi andYoshihiko Kanemitsu: Appl. Phys. Lett Vol. 86 (2005), p.253106.

Google Scholar

[5] Shuyan Gao, Hongjie Zhang, Ruiping Deng, Xiaomei Wang, Dehui Sun and Guoli Zheng: Appl. Phys. Lett Vol. 89 (2006), p.123125.

Google Scholar

[6] Yongzhe Zhang, Yanping Liu, Lihui Wu, Erqing Xie and Jiangtao Chen: J. Phys. D: Appl. Phys Vol. 42 (2009), p.085106.

Google Scholar

[7] Hideo SUGIMOTO, Katsuyuki EBISAWA and Tsuyoshi OKUNO: J. Appl. Phys Vol. 46 (2007), p. L839-841.

Google Scholar

[8] Camellia Panatarani, I. Wuled Lenggoro and Kikuo Okuyama: J. Phys. Chem. Solids Vol. 65 (2004), pp.1843-1847.

Google Scholar

[9] X. Zeng, J. Yuan, Z. Wang and L. Zhang: Adv. Mater Vol. 19 (2007), pp.4510-4514.

Google Scholar

[10] Dan Li and Younan Xia: Adv. Mater Vol. 16 (2004), pp.1151-1170.

Google Scholar

[11] Rachel A. Caruso, Jan H. Schattka and Andreas Greiner: Adv. Mater Vol. 13 (2001), pp.1577-1579.

Google Scholar

[12] Andreas Greiner and Joachim H. Wendorff: Chem. Int. Ed Vol. 46 (2007), pp.5670-5673.

Google Scholar

[13] X. M. Sui, C.L. Shao and Y.C. Liu: Appl. Phys. Lett Vol. 87 (2005), p.113115.

Google Scholar

[14] Dan Li, Yuliang Wang and Younan Xia: Adv. Mater Vol. 16 (2004), pp.361-366.

Google Scholar

[15] Dan Li and Younan Xia: Adv. Mater Vol. 16 (2004), pp.1151-1170.

Google Scholar

[16] H. Udono, Y. Sumi, S. Yamada and I. Kikuma: J. Crystal. Growth Vol. 310 (2008), pp.1827-1831.

DOI: 10.1016/j.jcrysgro.2007.11.226

Google Scholar

[17] T.C. Damen, S.P.S. Porto and B. Tell: Phys. Rev Vol. 142 (1966), pp.570-574.

Google Scholar

[18] C. Roy, S. Byrne, E. McGlynn, J. P. Mosnier, E. de Posada, D. O'Mahony, J. G. Lunney, M. O. Henry, B. Ryan and A. A. Cafolla: Thin Solid Films Vol. 436 (2003), pp.273-276.

DOI: 10.1016/s0040-6090(03)00617-5

Google Scholar

[19] J. N. Zeng, J. K. Low, Z. M. Ren, T. Liew and Y. F. Lu: Appl. Surf. Sci Vol. 197-198 (2002), pp.362-367.

Google Scholar

[20] J.F. Kong, W.Z. Shen, Y.W. Zhang, X.M. Li and Q.X. Guo: Solid State Communications Vol. 149 (2009), pp.10-13.

Google Scholar