[1]
Han Y, Cui W C, Huang X P, Wu Y S. Fatigue Strength Assessment of Large-scale Ship Structures. Shipbuilding of China. 2007, 48 (2): 60- 67. (in Chinese).
Google Scholar
[2]
Lemaitre J. A Course on Damage Mechanics. Berlin: Springer-Verlag, (1992).
Google Scholar
[3]
Chaboche J L, Lesne P M A. Liner Continuous Fatigue Damage Model. Fait Eng Mater Struct, 1988, 11 (1): 1-17.
Google Scholar
[4]
Chandrakanth S, Pandey P C. An Isotropic Damage Model for Ductile Material. Engineering Fracture Mechanics, 1995, 50 (4): 457-465.
DOI: 10.1016/0013-7944(94)00214-3
Google Scholar
[5]
Yang X H, Li N, Jin Z H. A Continuous Low Cycle Fatigue Damage Model and Its Application in Engineering Materials. Int. J. Fatigue, 1997, 19 (10): 687-692.
DOI: 10.1016/s0142-1123(97)00102-3
Google Scholar
[6]
Zheng Z G, Cai G W, Li Z J, Xu X Y. Interpretation of Manson-Coffin Model of Low Cycle Fatigue Based on Damage Mechanics. China Mechanical Engineering. 2011, 22 (7): 812-814 (in Chinese).
Google Scholar
[7]
Wu H Y. Damage Mechanics. Beijing: Academic Press, 1990. (in Chinese).
Google Scholar
[8]
Fujikubo M, Yao T, Khedmati M R. Estimation of ultimate strength of continuous stiffened panel under combined transverse thrust and lateral pressure part 2: continuous stiffened panel. Marine Structures, 2005, Vol. 18: 411-427.
DOI: 10.1016/j.marstruc.2006.01.001
Google Scholar
[9]
Xu H F, Wang W, Fang Q, Wang W B. Evolution model of rock plastic strain under cyclic loading. Journal of PLA University of Science and Technology (Nature Science Edition), 2012, 13 (3): 282-286. (in Chinese).
Google Scholar