On Non-Linear Dynamics and a Periodic Control Design Applied to the Potential of Membrane Action

Article Preview

Abstract:

The Fitzhugh-Nagumo (fn) mathematical model characterizes the action potential of the membrane. The dynamics of the Fitzhugh-Nagumo model have been extensively studied both with a view to their biological implications and as a test bed for numerical methods, which can be applied to more complex models. This paper deals with the dynamics in the (FH) model. Here, the dynamics are analyzed, qualitatively, through the stability diagrams to the action potential of the membrane. Furthermore, we also analyze quantitatively the problem through the evaluation of Floquet multipliers. Finally, the nonlinear periodic problem is controlled, based on the Chebyshev polynomial expansion, the Picard iterative method and on Lyapunov-Floquet transformation (L-F transformation).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-54

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.L. Hodgkin and A.F. Huxley: J. Physiol., 116, (1952) 500-544.

Google Scholar

[2] UCL Center. Nonlinear Dynamics, London. Available in <www. ucl. ac. uk/CNDA/> access in: 20 October (2005).

Google Scholar

[3] J. Cronin: Mathematical aspects of Hodgkin-Huxley neural theory, Cambridge University Press, New York (1987).

Google Scholar

[4] J. Wu, Y. Sun, L.P. Collis and R.B. Hill: Modeling, Simulation, Implementation, and Application of a Digital Voltage Clamp for Studying Excitable Tissues, in: The IASTED International Conference on Applied Modeling and Simulation, Cambridge, USA, November 4-6, (2002).

Google Scholar

[5] R. Fitzhugh: Impulses and physiological states in models of nerve membrane, Biophys. J. 1, (1961), 445-466.

DOI: 10.1016/s0006-3495(61)86902-6

Google Scholar

[6] H. Fukai, T. Nomura, S. Doi and S. Sato: Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations, I, II, Biol. Cybern. 82, (2000), pp.215-222; 223-229.

DOI: 10.1007/s004220050022

Google Scholar

[7] J. Nagumo, S. Arimoto and S. Yoshizawa: An active pulse transmission like simulating nerve axon. Proc. IRE 50, (1962), 2061-(2070).

DOI: 10.1109/jrproc.1962.288235

Google Scholar

[8] R. Fitzhugh: Thresholds and plateausin the Hodgkin-Huxley nerve equations, J. General Phys. 43, (1960), 867-896.

DOI: 10.1085/jgp.43.5.867

Google Scholar

[9] S. Doi and S. Kumagai: Biophysical Neural Networks, R. R. Poznanski, ed., Mary Ann Lievert, Inc., Larchmont, (2001) 261-301.

Google Scholar

[10] F.R. Chavarette, J. M. Balthazar, M. A. Ganazza and H. A. Hermini: 18 th Internat. Cong. of Mecha. Eng., (2005).

Google Scholar

[11] F.R. Chavarette, J.M. Balthazar, M. Rafikov and H.A. Hermini: Int.J. of Bifurcation and Chaos. Submitted (2006).

Google Scholar

[12] F.R. Chavarette, J. M. Balthazar and M. Rafikov: Submitted to Chaos, Solitions and Fractals, Submitted (2006).

Google Scholar

[13] S.C. Sinha and P. Joseph: Control of General Dynamic Systems with Periodically Varying Parameters Via Lyapunov-Floquet Transformation, Journal of Dynamic, Measurement, and Control, Vol. 116, (1994), 650-658.

DOI: 10.1115/1.2899264

Google Scholar

[14] S.C. Sinha and Der-Ho, Wu: An Efficient Computational Scheme for the Analysis of Periodic Systems, Journal of Sound and Vibration, 151(1), (1991), 91-117.

DOI: 10.1016/0022-460x(91)90654-3

Google Scholar

[15] S.C. Sinha and E.A. Butcher: Symbolic Computation of Fundamental Solution Matrices for Linear Time-Periodic Dynamical Systems, Journal of Sound and Vibration, 206(1), (1997), 61-85.

DOI: 10.1006/jsvi.1997.1079

Google Scholar

[16] R. Pandiyan R. and S.C. Sinha: Time-Varying Controller Synthesis for Nonlinear Systems Subject to Periodic Parametric Loadings, Journal of Vibration and Control, No. 7, (2001), 7390.

DOI: 10.1177/107754630100700105

Google Scholar

[17] T. Kanamaru and J.M.T. Thompson: Introduction to Chaos and Nonlinear Dynamics (2005). Available in <http: /brain. cc. kogakuin. ac. jp/~kanamaru/Chaos/e/> access in: 20 October (2005).

Google Scholar

[18] N.J. Peruzzi, J.M. Balthazar and B.R. Pontes: On a Control of a Non-ideal Mono-Rail System with Periodic coefficients, Proceedings of DETC'05, ASME 2005 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, USA, September 24 - 28, 2005, CD ROM, (2005).

DOI: 10.1115/detc2005-84726

Google Scholar

[19] M.C.K. Khoo: Physiological Control Systems, IEEE Press Series in Biomedical Engineering, New York, (1999).

Google Scholar

[20] J.M. Balthazar, D.T. Mook, H.I. Weber, M.L.R.F.R. Brasil, A. Fenili, D. Belato and J.L.P. Felix: Sixth conference on Dynamical Systems Theory and Applications, Poland, (2001), 2750.

Google Scholar

[21] J.M. Balthazar, D.T. Mook, H.I. Weber, M.L.R.F.R. Brasil, A. Fenili, D. Belato and J.L.P. Felix: Meccanica, 38, (2003), 613-621.

DOI: 10.1023/a:1025877308510

Google Scholar

[22] J.M. Balthazar, D.T. Mook, H.I. Weber, M.L.R.F.R. Brasil, A. Fenili, D. Belato, J.L.P. Felix and F.J. Garzeri, Dynamics Systems and Control, 22, (2004), 237-258.

Google Scholar