[1]
A.L. Hodgkin and A.F. Huxley: J. Physiol., 116, (1952) 500-544.
Google Scholar
[2]
UCL Center. Nonlinear Dynamics, London. Available in <www. ucl. ac. uk/CNDA/> access in: 20 October (2005).
Google Scholar
[3]
J. Cronin: Mathematical aspects of Hodgkin-Huxley neural theory, Cambridge University Press, New York (1987).
Google Scholar
[4]
J. Wu, Y. Sun, L.P. Collis and R.B. Hill: Modeling, Simulation, Implementation, and Application of a Digital Voltage Clamp for Studying Excitable Tissues, in: The IASTED International Conference on Applied Modeling and Simulation, Cambridge, USA, November 4-6, (2002).
Google Scholar
[5]
R. Fitzhugh: Impulses and physiological states in models of nerve membrane, Biophys. J. 1, (1961), 445-466.
DOI: 10.1016/s0006-3495(61)86902-6
Google Scholar
[6]
H. Fukai, T. Nomura, S. Doi and S. Sato: Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations, I, II, Biol. Cybern. 82, (2000), pp.215-222; 223-229.
DOI: 10.1007/s004220050022
Google Scholar
[7]
J. Nagumo, S. Arimoto and S. Yoshizawa: An active pulse transmission like simulating nerve axon. Proc. IRE 50, (1962), 2061-(2070).
DOI: 10.1109/jrproc.1962.288235
Google Scholar
[8]
R. Fitzhugh: Thresholds and plateausin the Hodgkin-Huxley nerve equations, J. General Phys. 43, (1960), 867-896.
DOI: 10.1085/jgp.43.5.867
Google Scholar
[9]
S. Doi and S. Kumagai: Biophysical Neural Networks, R. R. Poznanski, ed., Mary Ann Lievert, Inc., Larchmont, (2001) 261-301.
Google Scholar
[10]
F.R. Chavarette, J. M. Balthazar, M. A. Ganazza and H. A. Hermini: 18 th Internat. Cong. of Mecha. Eng., (2005).
Google Scholar
[11]
F.R. Chavarette, J.M. Balthazar, M. Rafikov and H.A. Hermini: Int.J. of Bifurcation and Chaos. Submitted (2006).
Google Scholar
[12]
F.R. Chavarette, J. M. Balthazar and M. Rafikov: Submitted to Chaos, Solitions and Fractals, Submitted (2006).
Google Scholar
[13]
S.C. Sinha and P. Joseph: Control of General Dynamic Systems with Periodically Varying Parameters Via Lyapunov-Floquet Transformation, Journal of Dynamic, Measurement, and Control, Vol. 116, (1994), 650-658.
DOI: 10.1115/1.2899264
Google Scholar
[14]
S.C. Sinha and Der-Ho, Wu: An Efficient Computational Scheme for the Analysis of Periodic Systems, Journal of Sound and Vibration, 151(1), (1991), 91-117.
DOI: 10.1016/0022-460x(91)90654-3
Google Scholar
[15]
S.C. Sinha and E.A. Butcher: Symbolic Computation of Fundamental Solution Matrices for Linear Time-Periodic Dynamical Systems, Journal of Sound and Vibration, 206(1), (1997), 61-85.
DOI: 10.1006/jsvi.1997.1079
Google Scholar
[16]
R. Pandiyan R. and S.C. Sinha: Time-Varying Controller Synthesis for Nonlinear Systems Subject to Periodic Parametric Loadings, Journal of Vibration and Control, No. 7, (2001), 7390.
DOI: 10.1177/107754630100700105
Google Scholar
[17]
T. Kanamaru and J.M.T. Thompson: Introduction to Chaos and Nonlinear Dynamics (2005). Available in <http: /brain. cc. kogakuin. ac. jp/~kanamaru/Chaos/e/> access in: 20 October (2005).
Google Scholar
[18]
N.J. Peruzzi, J.M. Balthazar and B.R. Pontes: On a Control of a Non-ideal Mono-Rail System with Periodic coefficients, Proceedings of DETC'05, ASME 2005 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, USA, September 24 - 28, 2005, CD ROM, (2005).
DOI: 10.1115/detc2005-84726
Google Scholar
[19]
M.C.K. Khoo: Physiological Control Systems, IEEE Press Series in Biomedical Engineering, New York, (1999).
Google Scholar
[20]
J.M. Balthazar, D.T. Mook, H.I. Weber, M.L.R.F.R. Brasil, A. Fenili, D. Belato and J.L.P. Felix: Sixth conference on Dynamical Systems Theory and Applications, Poland, (2001), 2750.
Google Scholar
[21]
J.M. Balthazar, D.T. Mook, H.I. Weber, M.L.R.F.R. Brasil, A. Fenili, D. Belato and J.L.P. Felix: Meccanica, 38, (2003), 613-621.
DOI: 10.1023/a:1025877308510
Google Scholar
[22]
J.M. Balthazar, D.T. Mook, H.I. Weber, M.L.R.F.R. Brasil, A. Fenili, D. Belato, J.L.P. Felix and F.J. Garzeri, Dynamics Systems and Control, 22, (2004), 237-258.
Google Scholar