Relative Performance of FRP-Concrete-Steel Double Skin Tubular Columns versus Solid and Hollow Concrete-Filled FRP Tubes

Article Preview

Abstract:

This paper reports on part of an ongoing experimental program at the University of Adelaide on FRP-concrete-steel composite columns. The results from twenty specimens including 12 double skin tubular columns (DSTCs), two solid concrete-filled fiber reinforced polymer (FRP) tubes (CFFTs), and six CFFTs with inner voids (H-CFFTs) are presented. The specimens were manufactured using high-strength concrete (HSC) and their FRP tubes were fabricated using unidirectional S-glass fiber sheets. The results of the experimental study indicate that that H-CFFTs perform significantly worse than DSTCs and CFFTs and their performance further degrades with an increase in the diameter of inner void. Comparison of the results from DSTC and CFFT specimens indicate that both hollow and concrete-filled DSTCs exhibit improved compressive behavior compared to CFFTs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ozbakkaloglu, T., Lim, J. C., and Vincent, T. (2013). FRP-confined concrete in circular sections: Review and assessment of the stress-strain models., Engineering Structures, 49: 1068-1088.

DOI: 10.1016/j.engstruct.2012.06.010

Google Scholar

[2] Rousakis, T., and Karabinis, A. (2008). Substandard reinforced concrete members subjected to compression: FRP confining effects., Materials and Structures, 41(9): 1595 – 1611.

DOI: 10.1617/s11527-008-9351-4

Google Scholar

[3] Vincent, T., and Ozbakkaloglu, T. (2013). Influence of Concrete Strength and Confinement Method on Axial Compressive Behavior of FRP Confined High- and Ultra High-Strength Concrete., Composites Part B-Engineering, 50: 413-428.

DOI: 10.1016/j.compositesb.2013.02.017

Google Scholar

[4] Saatcioglu, M., Ozbakkaloglu, T., and Elnabelsy, G. (2008). Seismic Behavior and Design of Reinforced Concrete Columns Confined with FRP Stay-in-place Formwork., ACI Special Publication SP-257, pp.149-170.

DOI: 10.14359/20245

Google Scholar

[5] Ozbakkaloglu, T., and Saatcioglu, M. (2006). Seismic Behavior of High Strength Concrete Columns Confined by Fiber-Reinforced Polymer Tubes., Journal of Composite Construction, ASCE, 10(6): 538-549.

DOI: 10.1061/(asce)1090-0268(2006)10:6(538)

Google Scholar

[6] Ozbakkaloglu, T., and Saatcioglu, M. (2007). Seismic Performance of Square High-Strength Concrete Columns in FRP Stay-in-Place Formwork., Structural Engineering, 133(1): 44-56.

DOI: 10.1061/(asce)0733-9445(2007)133:1(44)

Google Scholar

[7] Ozbakkaloglu, T., and Oehlers, D. J. (2008). Concrete-filled Square and Rectangular FRP Tubes under Axial Compression., Journal of Composites for Construction, ASCE, 12(4): 469-477.

DOI: 10.1061/(asce)1090-0268(2008)12:4(469)

Google Scholar

[8] Ozbakkaloglu, T., and Oehlers, D. J. (2008). Manufacture and testing of a novel FRP tube confinement system., Engineering Structures, 30(9): 2448-2459.

DOI: 10.1016/j.engstruct.2008.01.014

Google Scholar

[9] Ozbakkaloglu, T. (2013). Axial Compressive Behavior of Square and Rectangular High-Strength Concrete-Filled FRP Tubes., Journal of Composites for Construction, ASCE, 17(1): 151-161.

DOI: 10.1061/(asce)cc.1943-5614.0000321

Google Scholar

[10] Ozbakkaloglu, T. (2013). Concrete-filled FRP Tubes: Manufacture and Testing of New Forms Designed for Improved Performance., Journal of Composites for Construction, ASCE, 17(2): 280-281.

DOI: 10.1061/(asce)cc.1943-5614.0000334

Google Scholar

[11] Ozbakkaloglu, T. (2013). Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters., Engineering Structures, 51: 151-161.

DOI: 10.1016/j.engstruct.2013.01.017

Google Scholar

[12] Ozbakkaloglu, T. (2013). Behavior of Square and Rectangular Ultra High-Strength Concrete-Filled FRP Tubes under Axial Compression., Composites Part B. 54: 97-111.

DOI: 10.1016/j.compositesb.2013.05.007

Google Scholar

[13] Idris, Y., and Ozbakkaloglu, T. (2013). Seismic Behavior of High-Strength Concrete-Filled FRP Tube Columns., J. Compos. Constr., doi: 10. 1061/(ASCE)CC. 1943-5614. 0000388.

DOI: 10.1061/(asce)cc.1943-5614.0000388

Google Scholar

[14] Ozbakkaloglu, T. and Vincent, T. (2013). Axial Compressive Behavior of Circular High-Strength Concrete-Filled FRP Tubes., J. Compos. Constr., doi: 10. 1061/(ASCE)CC. 1943-5614. 0000410.

DOI: 10.1061/(asce)cc.1943-5614.0000410

Google Scholar

[15] Vincent, T., and Ozbakkaloglu, T. (2013). Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete., Construction and building materials, 47: 814–826.

DOI: 10.1016/j.conbuildmat.2013.05.085

Google Scholar

[16] Teng, J. G., Yu, T., and Wong, Y. L. (2004). Behavior of hybrid FRP-concrete-steel double-skin tubular columns., The 2nd International Conference on FRP Composites in Civil Engineering-CICE 2004, Adelaide, Australia, 811-818.

DOI: 10.1201/9780203970850.ch91

Google Scholar

[17] Teng, J. G., Yu, T., and Wong, Y. L. (2010). Hybrid FRP-concrete-steel double-skin tubular structural members., Proceedings, The Fifth International Conference on FRP Composites in Civil Engineering (CICE), 27-29 September, Beijing, China, 26-32.

DOI: 10.1007/978-3-642-17487-2_4

Google Scholar

[18] Wong, Y. L., Yu, T., Teng, J. G., and Dong, S. L. (2008). Behavior of FRP-confined concrete in annular section columns., Composites part B: Engineering, 38: 451-466.

DOI: 10.1016/j.compositesb.2007.04.001

Google Scholar

[19] Ozbakkaloglu, T., and Louk Fanggi, B. A. (2013).

Google Scholar

[20] Louk Fanggi, B.A., and Ozbakkaloglu, T. (2013). Compressive behavior of aramid FRP-HSC-Steel double-skin tubular columns., Construction and Building Materials, 48: 554-565.

DOI: 10.1016/j.conbuildmat.2013.07.029

Google Scholar