Validation of AMSR-E Soil Moisture Retrievals over Huaihe River Basin, in China

Article Preview

Abstract:

The two soil moisture retrieval methods based on the Advanced Microwave Scanning Radiometer of the Earth Observing System (AMSR-E) data, the standard algorithm by NASA and Land Parameter Retrieval Model (LPRM) have been validated at Xuchang site in Huaihe River basin, in China. The NASA dataset fails to capture main fluctuations of soil moisture, while the LPRM exhibits stronger agreement with the temporal dynamics and precipitation events associated with in situ soil moisture. The LPRM X-band product over ascending pass performs best with correlation coefficient value of 0.42, root mean square error ranging from 0.18 and mean absolute error of 0.14. Generally, the useful soil moisture information can be extracted over HRB from AMSR-E passive microwave data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

855-858

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. A. M. De Jeu, W. Wagner, and T. R. H. Holmes, Globalsoil moisture patterns observed by space borne microwave radiometers and scatterometers, Surv. Geophys., vol. 29 (2008), pp.399-420.

DOI: 10.1007/s10712-008-9044-0

Google Scholar

[2] M. Owe, R. A. M. De Jeu, and T. R. H. Holmes, Multi-sensor historical climatologyof satellite-derived global land surface moisture, Journal of Geophysical Research, vol. 113 (2008), p. F01002.

DOI: 10.1029/2007jf000769

Google Scholar

[3] E. G. Njoku, T. J. Jackson, V. Lakshmi, et al., Soil moisture retrieval from AMSR-E, IEEE Trans Geosci Remote Sens, vol. 41 (2003), pp.215-229.

DOI: 10.1109/tgrs.2002.808243

Google Scholar

[4] M. Owe, R. A. M. De Jeu, and J. Walker, A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index, IEEE Transactions on Geoscience and Remote Sensing, vol. 39 (2001).

DOI: 10.1109/36.942542

Google Scholar

[5] C. Rüdiger, J. -C. Calvet, C. Gruhier, et al., An Intercomparison of ERS-Scat and AMSR-E Soil Moisture Observations with Model Simulations over France, Journal Of Hydrometeorology, vol. 10 2009/04/01 (2009), pp.431-447.

DOI: 10.1175/2008jhm997.1

Google Scholar

[6] C. Prigent, F. Aires, W. B. Rossow, et al., Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: Relationship of satellite observations to in situ soil moisture measurements, J. Geophys. Res., vol. 110 (2005).

DOI: 10.1029/2004jd005087

Google Scholar

[7] C. S. Draper, J. P. Walker, P. J. Steinle, et al., An evaluation of AMSR-E derived soil moisture over Australia, Remote Sensing Of Environment, vol. 113 Apr 15 (2009), pp.703-710.

DOI: 10.1016/j.rse.2008.11.011

Google Scholar

[8] W. Wagner, V. Naeimi, K. Scipal, et al., Soil moisture from operational meteorological satellites, Hydrogeology Journal, vol. 15 (2007), pp.121-131.

DOI: 10.1007/s10040-006-0104-6

Google Scholar

[9] C. S. Draper, J. P. Walker, P. J. Steinle, et al., Remotely sensed soil moisture over Australia from AMSR–E, presented at the International Congress on Modelling and Simulation, Christchurch, New Zealand, (2007).

Google Scholar

[10] A. -Z. ZHANG, G. -S. JIA, H. -S. WANG, et al., Evaluation of AMSR-E-Derived Soil Moisture over Northern China, Atmospheric and Oceanic Science Letters, vol. 4 (2011), pp.223-228.

DOI: 10.1080/16742834.2011.11446933

Google Scholar