Chaos Control of Lozi Mapping

Article Preview

Abstract:

In this paper, the chaos control of Lozi mapping is carried out through the improved OGY method. By establishing linear mapping and applying the pole placement technique of the linear control theory, small time-dependent perturbations of a control parameter are selected. Unstable periodic orbits embedding in the chaos attractor are examined firstly, and then the period one orbit is chosen as a control target. When map point wanders to the neighborhood of the periodic point, system control parameter is perturbed. The unstable period one point is controlled to be the stable periodic orbit. At the same time, the different choice of the regulator poles is analyzed. Using numerical simulation, the effectiveness of the method is demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-235

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.I. Leine and H. Nijmeijer. Dynamics and bifurcations of non-smooth mechanical sysstems. Springer. (2004).

Google Scholar

[2] Y. Lue, J.H. Xie. Symmetry, cusp bifurcation and chaos of an impact oscillator between two sides. Applied mathematics and mechanics. 2007, 28(8): 991-998.

DOI: 10.1007/s10483-007-0813-z

Google Scholar

[3] E. Ott, C. Grebogi, J.A. Yorke. Controlling chaos. Phys Rev Lett. 1990, 64(11): 1196-1199.

DOI: 10.1103/physrevlett.64.1196

Google Scholar

[4] K. Pyragas. Continuous control of chaos by self-controlling feedback. Phys Lett A. 1992, 170: 421-428.

DOI: 10.1016/0375-9601(92)90745-8

Google Scholar

[5] T. Shinbrot, C. Grebogi, E. Ott. Using small perturbations to control chaos. Nature: (London), 1993, 363: 411-417.

DOI: 10.1038/363411a0

Google Scholar

[6] K. Pyragas. Predictable chaos in slightly perturbed unpredictable chaotic systems. Phys Lett A. 1993, 181: 203-210.

DOI: 10.1016/0375-9601(93)90640-l

Google Scholar

[7] D. Auerbach, C. Grebogi, E. Ott, J.A. Yorke. Controlling chaos in high dimensional systems. Phys Rev Lett. 1992, 69(24): 3479-3482.

DOI: 10.1103/physrevlett.69.3479

Google Scholar

[8] S. Boccaletti, C. Grebogi, Y.C. Lai, Mancini H, Maza D. The control of chaos: theory and applications. Physical Reports. 2000, 329: 103-197.

Google Scholar

[9] K. Yagasaki, T. Uozumi. A new approach for controlling chaotic dynamical systems. Phys Lett A. 1998, 238: 349-357.

DOI: 10.1016/s0375-9601(97)00929-8

Google Scholar

[10] K. Yagasaki, T. Uozumi. Controlling chaos using nonlinear approximations and delay coordinate embedding. Physics Letters A. 1998, 247: 129-139.

DOI: 10.1016/s0375-9601(98)00546-5

Google Scholar

[11] J. Flipe Romeiras, C. Grebogi, E. Ott. Dayawansa. Controlling chaotic dynamical systems. Phys D. 1992, 58: 165-192.

DOI: 10.1016/0167-2789(92)90107-x

Google Scholar

[12] M. Misiurewicz. Strange attractors for the Lozi mapping. Ann. W. Y . Acad. Sci. 1980, 375: 348-358.

Google Scholar

[13] K. Ogata. Controlling engineering. Second Ed. (Prentice Hall, Englewood Cliffs, NJ, 1990): 782-784.

Google Scholar