[1]
J. Roh, g-Navier-Stokes equations, Thesis, University of Minnesota, (2001).
Google Scholar
[2]
J.K. Hale and G. Raugel, A damped hyperbolic equation on thin domains, Trans. amer. Math. Soc. 329 (1992)185-219.
DOI: 10.1090/s0002-9947-1992-1040261-1
Google Scholar
[3]
R. Temam and M. Ziane, Navier-Stokes equations in three-dimensions thin domains with various boundary conditions, Adv. Differential Equations 1(1996), 499-546.
DOI: 10.57262/ade/1366896027
Google Scholar
[4]
R. Temam,M. Ziane, Navier-Stokes equations in thin spherical domains, in: Contemp. Math. Vol. 209 (1997) 281-314.
DOI: 10.1090/conm/209/02772
Google Scholar
[5]
G. Raugel and G.R. sell, Navier-Stokes equations on thin 3D domains,I. Global attractors and global regularity of solutions,J. Amer. Math. Soc. 6(1993), 503-568.
DOI: 10.1090/s0894-0347-1993-1179539-4
Google Scholar
[6]
G. Raugel G.R. Sell, Navier-Stokes equations on thin 3D domains II, Global regularity of spa tially periodic solutions, in: Nonlinear Partial Differentical Equations and Their Applications, college de France Seminar, Longman, Harlow, XI(1994).
DOI: 10.2307/2152776
Google Scholar
[7]
J. Roh, Dynamics of the g-Navier-stokes equations,J. differential Equations 211(2005) 452-484.
Google Scholar
[8]
G.R. Sell,Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, Vol. 143, Springer, New York, (2002).
Google Scholar
[9]
H. Bae and J. Roh, Existence of solutions of the g-Navier-Stokes equations, Tai wanese J. Math, 8(1) (2004)85-102.
Google Scholar
[10]
R. Temam, Navier-Stokes equations: theory and numerical analysis, Reprient of the 1984 edition, AMS Chelsea Publishing, Providence, RI, (2001).
Google Scholar