Outdoor Navigating Scene Labeling Using Importance Factor Based I-RELIEF and Feature Weighted Support Vector Machines

Article Preview

Abstract:

Feature selection plays an important role in terrain classification for outdoor robot navigation. For terrain classification, the image data usually have a large number of feature dimensions. The better selection of features usually results in higher labeling accuracy. In this work, a novel approach for terrain perception using Importance Factor based I-Relief algorithm and Feature Weighted Support Vector Machines (IFIR-FWSVM) is put forward. Firstly, the weight of each feature for classification is computed by using Importance Factor based I-Relief algorithm (IFIR) and the irrelevant features are eliminated. Then the weighted features are used to compute the kernel functions of SVM and trained the classifier. Finally, the trained SVM is employed to predict the terrain label in the far-field regions. Experimental results based on DARPA datasets show that the proposed method IFIR-FWSVM is superior over traditional SVM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

467-474

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. G. Zhou: Journal of Computational Infor Vol. 7 (2011), p. (2006).

Google Scholar

[2] H. Jin, Q. T. Wang: An improved UKF for BD/SINS integrated navigation system, J Comput Infor Sys Vol. 8 (2012), p.4855.

Google Scholar

[3] L. Matthies: Int J Comput Vision Vol. 8 (1992), pp.71-91.

Google Scholar

[4] A. Rieder, B. Southall, in: Proc. IEEE Intelligent Vehicle Symposium (2003).

Google Scholar

[5] W. H. Huang, M. Ollis, M. Happold, B. A. Stancil: J Field Robot Vol. 26 (2009), p.196.

Google Scholar

[6] L. D. Jackel, E. Krotkov, M. Perschbacher, J. Pippine, C. Sullivan: J Field Robot Vol. 23 (2006), p.945.

Google Scholar

[7] M. J. Procopio, J. Mulligan, and G. Grudic: J Field Robot Vol. 26 (2009), p.145.

Google Scholar

[8] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, G. Bradski: Robotics: Science & Systems (2006).

DOI: 10.15607/rss.2006.ii.005

Google Scholar

[9] M. Happold, M. Ollis, N. Johnson: Robotics: Science and System (2006).

Google Scholar

[10] M. Bajracharya, A. Howard, L. H. Matthies, B. Tang, M. Turmon: J Field Robot Vol. 26 (2009), p.3.

Google Scholar

[11] R. Manduchi: Auton Robot Vol. 18 (2005), p.81.

Google Scholar

[12] I. Halatci, C. A. Brooks, K. Iagnemma, in: IEEE Aerospace Conference Proceedings (2007).

Google Scholar

[13] I. Halatci, C. A. Brooks, K. Iagnemma: Robotica Vol. 26 (2008), p.767.

Google Scholar

[14] X. Ren, J. Malik, in: IEEE International Conference on Computer Vision (2003).

Google Scholar

[15] P. Felzenszwalb, D. Huttenlocher: Int J Comput Vision Vol. 59 (2004), p.167.

Google Scholar

[16] R. Kohavi, G. H. John: Artif Intell Vol. 97 (1997), p.273.

Google Scholar

[17] K. Kira, L. A. Rendell, in: Proceedings of the Ninth International Workshop on Machine Learning (1992).

Google Scholar

[18] T. G. Dietterich: Ai Mag Vol. 18 (1997), p.97.

Google Scholar

[19] Y. Sun: IEEE T Pattern Anal Vol. 29 (2007), p.1035.

Google Scholar

[20] C. Cortes, V. Vapnik: Mach Learn Vol. 20 (1995), p.273.

Google Scholar

[21] K. Wang, X. Wang, Y. Zhong, in: International Conference on Measuring Technology and Mechatronics Automation (2010).

Google Scholar