[1]
Zhang Huichun; Wang Fuzhong; An Xizhong; Liu Guoquan, et al. Three-dimensional thermomechanical coupled FEM analysis of static recrystallisation during two-pass tube tension reducing process. Material Science and Technology[J], 2009. 0, PP : 1-7.
DOI: 10.1179/174328409x459338
Google Scholar
[2]
Wang Fuzhong; Lu lu; Zhang Huichun; et al. Equivalent stress analysis of processing tube tension reducing of the new steel 33Mn2v for oil well tubes. Mechanical Engineering[J], 2008. 54 PP : 219-224 Ning Yong-quan; Yao Ze-kun; Li Hui; Guo Hongzhen ; et al. High temperature deformation behavior of hot isostatically pressed P/MFGH4096 superalloy, Material Science and Engineering A[J], 2010. 527, PP : 961-966.
DOI: 10.1016/j.msea.2009.09.011
Google Scholar
[3]
Liu X. Y; Pan Q. L; He Y. B; Li W. B; Liang W. J; Yin Z. M; Flow behavior and microstructural evolution of Al–Cu–Mg–Ag alloy during hot compression deformation. Materials Science and Engineering A[J], 2009. 500 , PP : 150–154.
DOI: 10.1016/j.msea.2008.09.028
Google Scholar
[4]
A. Gholamzadeh; A. Karimi Taheri. The prediction of hot flow behavior of Al–6% Mg alloy. Mechanics Research Communications[J], 2009. 36, PP : 252–259.
DOI: 10.1016/j.mechrescom.2008.06.011
Google Scholar
[5]
Chen Fei; Cui Zhenshan; Chen Shijia. Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part I: Dynamic recrystallization. Materials Science and Engineering A[J], 2011. 528 , PP: 5073–5080.
DOI: 10.1016/j.msea.2011.03.008
Google Scholar
[6]
Dipti Samantaray; Sumantra Mandal; A.K. Bhaduri. Constitutive analysis to predict high-temperature flow stress in modified 9Cr–1Mo (P91) steel. Materials and Design[J], 2010. 31, PP: 981–984.
DOI: 10.1016/j.matdes.2009.08.012
Google Scholar
[7]
L. Lecarme C; Tekoglu and T. Pardoen. Void growth and coalescence in ductile solids with stage III and stage IV strain hardening. International Journal of Plasticity[J], 2011. 8, PP: 1203-1223.
DOI: 10.1016/j.ijplas.2011.01.004
Google Scholar
[8]
T. Seshacharyulu; S.C. Medeiros; W.G. Frazier; P.V.R.K. Prasad. Hot working of commercial Ti–6Al–4V with an equiaxed α–β microstructure: materials modeling considerations. Materials Science and Engineering A[J], 2000. 284, PP: 184–194.
DOI: 10.1016/s0921-5093(00)00741-3
Google Scholar
[9]
Wu Kai; Liu Guo-quan; Hu Benfu; LI Feng; Zhang Yiwen ; Yu Tao; Liu Jiantao. Characterization of hot deformation behavior of a new Ni–Cr–Co based P/M superalloy. Materials Characterization[J], 2010. 61, PP: 330-340.
DOI: 10.1016/j.matchar.2009.12.013
Google Scholar
[10]
SanjibBanerjee; P.S. Robi; A. Srinivasan; Lakavath Praveen Kumar. High Temperature Deformation behavior of Al–Cu–Mg alloys micro-alloyed with Sn. Materials Science and Engineering A[J], 2010. 527, PP: 2498-2503.
DOI: 10.1016/j.msea.2010.01.052
Google Scholar
[11]
Bao Siqian; Zhao Gang ; Yu Chibin; et al. Recrystallization behavior of a Nb-microalloyed steel during hot compression. Applied Mathematical Modelling [J], 2011. 35, PP : 3268–3275.
DOI: 10.1016/j.apm.2011.01.024
Google Scholar
[12]
Fan X. G; Yang H; Gao P. F. Deformation behavior and microstructure evolution in multistage hot working of TA15 titanium alloy: on the role of recrystallization. Journal of Mater Science [J], 2011. 46, PP: 6018–6028.
DOI: 10.1007/s10853-011-5564-y
Google Scholar
[13]
Fan X. G; Yang H; Gao P. F. Deformation behavior and microstructure evolution in multistage hot working of TA15 titanium alloy: on the role of recrystallization. Journal of Mater Science [J], 2011. 46, PP: 6018–6028.
DOI: 10.1007/s10853-011-5564-y
Google Scholar
[14]
Wang Fuzhong; Lu lu; Zhang Huichun; et al. Equivalent stress analysis of processing tube tension reducing of the new steel 33Mn2v for oil well tubes. Mechanical Engineering[J], 2008. 54 PP : 219-224.
Google Scholar
[15]
Ning Yong-quan; Yao Ze-kun; Li Hui; Guo Hongzhen ; et al. High temperature deformation behavior of hot isostatically pressed P/MFGH4096 superalloy, Material Science and Engineering A[J], 2010. 527, PP : 961-966.
DOI: 10.1016/j.msea.2009.09.011
Google Scholar