Maximum Likelihood Based Joint Angle-Frequency Estimation Using QPSO Algorithm

Article Preview

Abstract:

In this paper, the Maximum Likelihood (ML) method using Quantum-behaved Particle Swarm Optimization (QPSO) algorithm is applied to the problem of estimating the direction-of-arrival (DOA) and the Doppler frequency of multiple signal sources impinging on an antenna array simultaneously. The extended observability matrix containing the angle and frequency parameters is established using state-space model. The ML method is used to estimate the parameters accurately and convert the problem from parameter estimation to a nonlinear multidimensional function optimization. Then the DOA and Doppler frequency are estimated by optimizing the likelihood function using QPSO algorithm. The proposed method reserves the asymptotic unbiased estimation of the ML method and reduces the computational burden of calculating the solution. Besides, the estimated parameters can be paired automatically.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1227-1232

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. N. Lemma, A. J. van der Veen and E. F. Deprettere, Joint angle-frequency estimation using multi-resolution ESPRIT, IEEE International Conference on Acoustics, Speech and Signal Processing, Seattle, USA, pp.1957-1960, (1998).

DOI: 10.1109/icassp.1998.681447

Google Scholar

[2] M. Haardt and J. A. Nossek, 3-D unitary ESPRIT for joint 2-D angle and carrier estimation, IEEE International Conference on Acoustics, Speech and Signal Processing, Munich, Germany, pp.255-258, (1997).

DOI: 10.1109/icassp.1997.599617

Google Scholar

[3] A. N. Lemma, A. J. van der Veen and E. F. Deprettere, Analysis of ESPRIT Based joint angle-frequency estimation, IEEE International Conference on Acoustics, Speech and Signal Processing, Istanbul,Turkey, pp.3053-3056, (2000).

DOI: 10.1109/icassp.2000.861181

Google Scholar

[4] A. N. Lemma, A. J. van der Veen and E. F. Deprettere, Analysis of joint angle-frequency estimation using ESPRIT, IEEE Transactions on Signal Processing, vol. 51, no. 5, pp.1264-1283, (2003).

DOI: 10.1109/tsp.2003.810306

Google Scholar

[5] F. L. Liu, J. K Wang and R. Y. Du, Unitary-JAFE algorithm for joint angle–frequency estimation based on Frame–Newton method, Signal Processing, vol. 90, no. 3, pp.809-820, (2010).

DOI: 10.1016/j.sigpro.2009.08.013

Google Scholar

[6] J. D. Lin, W. H. Fang, Y. Y. Wang and J. T. Chen, FSF MUSIC for Joint DOA and frequency estimation and its performance analysis, IEEE Transactions on Signal Processing, vol. 54, no. 12, pp.4529-4542, (2006).

DOI: 10.1109/tsp.2006.882112

Google Scholar

[7] F. Atheley, Asymptotically decoupled angle-frequency estimation with sensor arrays, The Thirty-Third Asilomar Conference on Signal, Systems and Computers, Pacific Grove, USA, p.1098–1102, (1999).

DOI: 10.1109/acssc.1999.831879

Google Scholar

[8] H. G. Wang and S. Kay, Maximum likelihood angle-Doppler estimator using importance sampling, IEEE Transactions on Aerospace and Electronics Systems, vol. 46, no. 2, pp.610-622, (2010).

DOI: 10.1109/taes.2010.5461644

Google Scholar

[9] J. Sun, W. Fang and W. B. Xu, Particle swarm optimization with particles having quantum behavior, Congress on Evolutionary Computation, Portland, USA, pp.326-331, (2004).

DOI: 10.1109/cec.2004.1330875

Google Scholar

[10] W. Fang, J. Sun and Z. P. Xie, Convergence analysis of quantum-behaved particle swarm optimization algorithm and study on its control parameter, Acta Physica Sinica, vol. 59, no. 6, pp.3686-3694, 2010. (in Chinese).

DOI: 10.7498/aps.59.3686

Google Scholar

[11] L. Boccato, R. Krummenauer, R. Attux and A. Lopes, Application of natural computing algorithms to maximum likelihood estimation of direction of arrival, Signal Processing, vol. 92, no. 5, pp.1338-1352, (2012).

DOI: 10.1016/j.sigpro.2011.12.004

Google Scholar