Construction Method of Constraint Matrices Corresponded by an Optimal Solution

Article Preview

Abstract:

Through deep analysis of the solvability, which is based on interval linear equations and inequalities systems, for a given optimal solution to interval linear programming problem, we propose the construction method of constraint matrices corresponded by the optimal solution in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1617-1620

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Li Wei, Linear optimization and its extension[M], beijing: National Defense Industry Press, 2011: 200-212.

Google Scholar

[2] M. Fiedler, J. Nedoma, J. Ramik, J. Rohn, K. Zimmermann, Linear optimization problems within exact data, Springer-Verlag, New York (2006).

Google Scholar

[3] M. Hladik, Interval Linear Programming: A Survey, In: Zoltan Adam Mann Edits, Linear Programming New Frontiers. Nova Science Publishers Inc., (2011).

Google Scholar

[4] W. Li and G. -X. Wang, General solutions for linear programming with interval right hand side, Proceedings of the 2006 International Conference on Machine Learning and Cybernetics, Dalian, 2006 1836-1839.

DOI: 10.1109/icmlc.2006.259046

Google Scholar

[5] Hladik M. Linear Programming – New Frontiers in Theory and Applications [M]. New York: Nova Science Publishers, 2011: 1-46.

Google Scholar

[6] M. Allahdadi and H. Mishmast Nehi, The optimal solution set of the interval linear programming problems, Optimization Letters, 2013 http: /dx. doi. org/10. 1007/s11590-012- 0530-4.

DOI: 10.1007/s11590-012-0530-4

Google Scholar

[7] J.J. Luo, W. Li, Strong optimal solutions of interval linear programming, Linear Algebra Appl., (2013). http: /dx. doi. org/10. 1016/j. laa. 2013. 06. 022.

DOI: 10.1016/j.laa.2013.06.022

Google Scholar

[8] J. W. Chinneck and K. Ramadan, Linear programming with interval coefficients[J], J. Oper. Res. Soc. 2000 (51) 209-220.

Google Scholar

[9] Liu Xiao, Li Wei, Structure on Constraint Matrices Corresponded by An Optimal Solution[J], Journal of Hangzhou Dianzi University, 2014(3).

Google Scholar

[10] W. Gerlach, Zur Losung hearer Ungleichungssysteme bei Storung der rechten Seite und der Koefizientenmatrix, Mathematische Operationsforschung und Statistik, Series Optimization, 1981(12) 41-43.

DOI: 10.1080/02331938108842705

Google Scholar