[1]
E. J. Candes and T. Tao. The power of convex relaxation: Near-optimal matrix completion. IEEE Transactions on Information Theory, 56(5): 2053-2080, (2010).
DOI: 10.1109/tit.2010.2044061
Google Scholar
[2]
D. Gross. Recovering low-rank matrices from few coefficients in any basis. IEEE Transactions on Information Theory, 57(3): 1548-1566, (2011).
DOI: 10.1109/tit.2011.2104999
Google Scholar
[3]
J. Ellenberg. Fill in the blanks: Using math to turn lo-res datasets into hi-ressamples. Wired, March (2010).
DOI: 10.1515/9781400839544.75
Google Scholar
[4]
B. Zeng and J. Fu, Directional discrete cosine transforms: A new framework for image coding, IEEE Transactions on Circuits and Systems for Video Technology, 18(13), pp.305-313, (2011).
DOI: 10.1109/tcsvt.2008.918455
Google Scholar
[5]
H. Ji, C. Q. Liu, Z.W. Shen, and Y. H. Xu, Robust video denoising using low rank matrix completion, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1791-1798, (2010).
DOI: 10.1109/cvpr.2010.5539849
Google Scholar
[6]
X. Geng, K. S. Miles, Z. H. Zhou, and L. Wang, Face image modeling by multilinear subspace analysis with missing values, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41(3): 881-892, (2011).
DOI: 10.1109/tsmcb.2010.2097588
Google Scholar
[7]
E. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the ACM, 58(1), 1-37. (2009).
Google Scholar
[8]
J.F. Cai, E. J. Candes, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4): 1956-1982, (2010).
DOI: 10.1137/080738970
Google Scholar
[9]
K. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pacific Journal of Optimization, (2010).
Google Scholar
[10]
Q. S. You, Q. Wan, Y. P. Liu, a short note on strongly Convex Programming for Exact Matrix Completion and Robust Principal Component Analysis[J]. Inverse Problems and Imaging, 2013, Vol 7, No 1, pp: 305-306.
DOI: 10.3934/ipi.2013.7.305
Google Scholar
[11]
G. Stephane, L. Guillaume. Weighted algorithms for compressed sensing and matrix completion. http: /arxiv. org/abs/1107. 1638, (2011).
Google Scholar
[12]
M. Fazel, T. K. Pong, D. Sun, P. Tseng, Hankel matrix rank minimization with applications in system identification and realization, Available at http: /faculty. washington. edu/mfazel/, (2012).
DOI: 10.1137/110853996
Google Scholar