The Numerical Analysis and Simulation of a Linearized Crank-Nicolson H1-GMFEM for Nonlinear Coupled BBM Equations

Article Preview

Abstract:

In this article, the numerical scheme of a linearized Crank-Nicolson (C-N) method based on H1-Galerkin mixed finite element method (H1-GMFEM) is studied and analyzed for nonlinear coupled BBM equations. In this method, the spatial direction is approximated by an H1-GMFEM and the time direction is discretized by a linearized Crank-Nicolson method. Some optimal a priori error results are derived for four important variables. For conforming the theoretical analysis, a numerical test is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1919-1926

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.K. Pani. An H1-Galerkin mixed finite element method for parabolic partial differential equations, SIAM J. Numer. Anal. 1998, 35: 712-727.

DOI: 10.1137/s0036142995280808

Google Scholar

[2] A.K. Pani, G. Fairweather, H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations. IMA Journal of Numerical Analysis, 2002, 22: 231-252.

DOI: 10.1093/imanum/22.2.231

Google Scholar

[3] A.K. Pani, R.K. Sinha, A.K. Otta. An H1-Galerkin mixed method for second order hyperbolic equations, International Journal of Numerical Analysis and Modeling, 2004, 1(2): 111-129.

Google Scholar

[4] Y. Liu, H. Li, H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations, Applied Mathematics and Computation, 2009, 212(2): 446-457.

DOI: 10.1016/j.amc.2009.02.039

Google Scholar

[5] Z.J. Zhou, An H1-Galerkin mixed finite element method for a class of heat transport equations, Appl. Math. Model., 2010, 34: 2414-2425.

Google Scholar

[6] D. Y Shi, H.H. Wang. Nonconforming H1-Galerkin mixed FEM for Sobolev equations on anisotropic meshes, Acta Mathematicae Applicatae Sinica(English Series), 2009, 25(2): 335-344.

DOI: 10.1007/s10255-007-7065-y

Google Scholar

[7] L. Guo, H.Z. Chen. H1-Galerkin mixed finite element method for Sobolev equations, J. Sys. Sci. Math. Scis., 2006, 26(3): 301-314.

Google Scholar

[8] Y. Liu, H. Li, S. He, W. Gao, S. Mu. A new mixed scheme based on variation of constants for Sobolev equation with nonlinear convection term, Appl. Math. J. Chinese Univ., 2013, 28(2): 158-172.

DOI: 10.1007/s11766-013-2939-7

Google Scholar

[9] L. Guo, H.Z. Chen. H1-Galerkin mixed finite element method for the regularized long wave equation, Computing, 2006, 77: 205-221.

DOI: 10.1007/s00607-005-0158-7

Google Scholar

[10] Y. Liu, H. Li, Y.W. Du, J.F. Wang. Explicit multistep mixed finite element method for RLW equation, Abstract and Applied Analysis, Volume 2013, Article ID 768976, 12 pages.

DOI: 10.1155/2013/768976

Google Scholar

[11] Y. Liu, H. Li, J.F. Wang. Error estimates of H1-Galerkin mixed finite element method for Schrodinger equation, Appl. Math. J. Chinese Univ., 2009, 24(1): 83-89.

DOI: 10.1007/s11766-009-1782-3

Google Scholar

[12] Z.D. Luo. Theory Bases and Applications of Finite Element Mixed Methods, Science Press, Beijing, (2006).

Google Scholar

[13] L.W. Cui, Y. Zhao. Orbital stability of solitary waves for coupled BBM equations, Advances in Mathematics, 2012, 41(3): 341-346.

Google Scholar

[14] M.R. Ohm, H.Y. Lee, J.Y. Shin. Error analysis of a mixed finite element approximation of the semilinear Sobolev equations, J. Appl. Math. Comput., 2012, 40: 95-110.

DOI: 10.1007/s12190-012-0569-5

Google Scholar