[1]
A.K. Pani. An H1-Galerkin mixed finite element method for parabolic partial differential equations, SIAM J. Numer. Anal. 1998, 35: 712-727.
DOI: 10.1137/s0036142995280808
Google Scholar
[2]
A.K. Pani, G. Fairweather, H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations. IMA Journal of Numerical Analysis, 2002, 22: 231-252.
DOI: 10.1093/imanum/22.2.231
Google Scholar
[3]
A.K. Pani, R.K. Sinha, A.K. Otta. An H1-Galerkin mixed method for second order hyperbolic equations, International Journal of Numerical Analysis and Modeling, 2004, 1(2): 111-129.
Google Scholar
[4]
Y. Liu, H. Li, H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations, Applied Mathematics and Computation, 2009, 212(2): 446-457.
DOI: 10.1016/j.amc.2009.02.039
Google Scholar
[5]
Z.J. Zhou, An H1-Galerkin mixed finite element method for a class of heat transport equations, Appl. Math. Model., 2010, 34: 2414-2425.
Google Scholar
[6]
D. Y Shi, H.H. Wang. Nonconforming H1-Galerkin mixed FEM for Sobolev equations on anisotropic meshes, Acta Mathematicae Applicatae Sinica(English Series), 2009, 25(2): 335-344.
DOI: 10.1007/s10255-007-7065-y
Google Scholar
[7]
L. Guo, H.Z. Chen. H1-Galerkin mixed finite element method for Sobolev equations, J. Sys. Sci. Math. Scis., 2006, 26(3): 301-314.
Google Scholar
[8]
Y. Liu, H. Li, S. He, W. Gao, S. Mu. A new mixed scheme based on variation of constants for Sobolev equation with nonlinear convection term, Appl. Math. J. Chinese Univ., 2013, 28(2): 158-172.
DOI: 10.1007/s11766-013-2939-7
Google Scholar
[9]
L. Guo, H.Z. Chen. H1-Galerkin mixed finite element method for the regularized long wave equation, Computing, 2006, 77: 205-221.
DOI: 10.1007/s00607-005-0158-7
Google Scholar
[10]
Y. Liu, H. Li, Y.W. Du, J.F. Wang. Explicit multistep mixed finite element method for RLW equation, Abstract and Applied Analysis, Volume 2013, Article ID 768976, 12 pages.
DOI: 10.1155/2013/768976
Google Scholar
[11]
Y. Liu, H. Li, J.F. Wang. Error estimates of H1-Galerkin mixed finite element method for Schrodinger equation, Appl. Math. J. Chinese Univ., 2009, 24(1): 83-89.
DOI: 10.1007/s11766-009-1782-3
Google Scholar
[12]
Z.D. Luo. Theory Bases and Applications of Finite Element Mixed Methods, Science Press, Beijing, (2006).
Google Scholar
[13]
L.W. Cui, Y. Zhao. Orbital stability of solitary waves for coupled BBM equations, Advances in Mathematics, 2012, 41(3): 341-346.
Google Scholar
[14]
M.R. Ohm, H.Y. Lee, J.Y. Shin. Error analysis of a mixed finite element approximation of the semilinear Sobolev equations, J. Appl. Math. Comput., 2012, 40: 95-110.
DOI: 10.1007/s12190-012-0569-5
Google Scholar