[1]
ARMBRUST. Above the Clouds: A Berkeley View of Cloud Computing[J]. EECS Department, University of California, 2009, 20: 100-103.
Google Scholar
[2]
Bittencourt, Luiz Fernando, Madeira, Edmundo R. M, Towards the Scheduling of Multiple Workflows on Computational Grids[J], Journal of Grid Computing, v8, 2010: 419–441.
DOI: 10.1007/s10723-009-9144-1
Google Scholar
[3]
W.T. McCormick, P.J. Sehweitzer. Problem decomposition and data reorganization by a clustering technique[J]. Operations Research, v20, n5, 1972: 993-1009.
DOI: 10.1287/opre.20.5.993
Google Scholar
[4]
S. Abrishami, M. Naghibzadeh, D.H.J. Epema, Cost-driven scheduling of Grid workflows using partial critical paths[J], IEEE Trans. Parallel Distrib. Syst. v23(8), 2012: 1400–1414.
DOI: 10.1109/tpds.2011.303
Google Scholar
[5]
E. Deelman, Grids and clouds: making workflow applications work in heterogeneous distributed environments[J], Int. J. High Perform. Comput. Appl. v24, 2010: 284–298.
DOI: 10.1177/1094342009356432
Google Scholar
[6]
M. Xu, L. Cui, H. Wang, Y. Bi, A multiple QoS constrained scheduling strategy of multiple workflows for cloud computing[C], 2009 IEEE International Symposium on Parallel and Distributed Processing with Applications, 2009: 629–634.
DOI: 10.1109/ispa.2009.95
Google Scholar
[7]
S. Pandey, L. Wu, S. Guru, R. Buyya, A particle swarm optimizationbased heuristic for scheduling workflow applications in cloud computing environments[C], 24th IEEE International Conference on Advanced Information Networking and Applications, AINA, 2010: 400–407.
DOI: 10.1109/aina.2010.31
Google Scholar
[8]
Topcuoglu H, Hariri S, Wu M, Performance effective and low-complexity task scheduling for heterogeneous computing[J]. IEEE Trans Parallel Distrib Syst, v13(3), 2002: 260–274.
DOI: 10.1109/71.993206
Google Scholar