Helicon Plasma Discharge for Processing Wall Material

Article Preview

Abstract:

A helicon wave plasma (HWP) discharge with strong magnetic field was investigated. The HWP was produced with an internal Nagoya III antenna that is perpendicular to the magnetic field and driven by a 13.56 MHz radio-frequency (RF) source. HWP was characterized in terms of electron density, electron temperature and plasma potential using a single Langmuir probe in Ar gas. The result of Langmuir probe shows that the electron density increases with RF power, but saturate above 700 W at a density of 2×1019 m-3. Scanning electron microscopy (SEM) was extensively used to characterize the quality of the graphite surface. The result of SEM shows the surface of graphite that exposed to plasma processing has exhibited smoother and compacter surface topography. Meanwhile, the concentration of impurity on the graphite surface decreases with plasma processing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-32

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Toschi: Fusion Eng. Des. Vol. 36 (1997), p.1.

Google Scholar

[2] Dittmar T et al: Phys. Scr. Vol. 2009 (2009), p.014027.

Google Scholar

[3] Roth E et al: J. Nucl. Mater. Vol. 390–391 (2009), p.1.

Google Scholar

[4] G. Federici et al: Nucl. Fusion. Vol. 41 (12R) (2001), p. (1967).

Google Scholar

[5] M. Rubel et al: J. Nucl. Mater. Vol. 363–365 (2007), p.87.

Google Scholar

[6] W. Poschenrieder, G. Staudenmaier, and P. Staib: J. Nucl. Mater. Vol. 93–94 (1980), p.322.

Google Scholar

[7] A. Sagara et al: J. Plasma Fus. Res. Vol. 75 (1999), p.263.

Google Scholar

[8] E. Gauthier et al: J. Nucl. Mater. Vol. 241–243 (1997), p.553.

Google Scholar

[9] M.A. Lieberman and A.J. Lichtenberg: Principles of Plasma Discharges and Materials Processing (Wiley, New York 1994).

Google Scholar

[10] R.W. Boswell and F.F. Chen: IEEE Trans. Plasma Sci. Vol. 25 (1997), p.1229.

Google Scholar

[11] F.F. Chen and R.W. Boswell: IEEE Trans. Plasma Sci. Vol. 25 (1997), p.1245.

Google Scholar

[12] A. Goncharov, I. Protsenko, G. Yushkov, and I. Brown: Appl. Phys. Lett. Vol. 75 (1999), p.911.

Google Scholar

[13] J.J. Su, T. Katsouleas, and J.M. Dawson: Phys. Rev. A, At. Mol. Opt. Phys. Vol. 41 (1990),p.3321.

Google Scholar

[14] R.W. Boswell: Plasma Phys. Control. Fusion. Vol. 26(1984), p.1147.

Google Scholar

[15] S. Shinoharaa and H. Mizokoshi: Rev. Sci. Instrum. Vol. 77 (2006), p.036108.

Google Scholar

[16] C.G. Jin et al: IEEE Trans. Plasma Sci. Vol. 39 (2011), p.3103.

Google Scholar

[17] F.F. Chen: Physics of Plasmas, Vol. 8 (2001), p.3029.

Google Scholar

[18] Hiden Analytical, Ltd.: Handbook of Plasma Diagnostics (Warrington, England, U.K. 2000).

Google Scholar

[19] F.F. Chen: Plasma Sources Science and Technology. Vol. 15 (2006), p.773.

Google Scholar

[20] D. Herman: The Use of Electrostatic Probes to Characterize the Discharge Plasma Structure and Identify Discharge Cathode Erosion Mechanisms in Ring-Cusp Ion Thrusters (Ph.D., University of Michigan, America, 2005).

Google Scholar