Design of Control System Based on Siemens (LOGO!) for Vegetable Greenhouse

Article Preview

Abstract:

Timely monitoring and controlling light intensity,temperature,air humidity, soil moisture by Siemens (LOGO!) and analyzing and regulating,which comprised the controlling system for vegetable greenhouse. Controlling greenhouse shutter, filling light, moisturizing, dehumidifying and ventilating for vegetables automatically or artificially, the robust growth of vegetables is achieved in relatively appropriate environment in greenhouse.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3300-3304

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. LI. Study on automatic regulating system to the using efficiency of solar energy in vegetable greenhouse. Manufacturing automation 2010; 32(5).

Google Scholar

[2] Irving PE, Thiagarajan C. Fatigue damage characterisation in carbon fibre composite materials using an electrical potential technique. Smart Mater Struct 1998; 7: 456 – 66.

DOI: 10.1088/0964-1726/7/4/004

Google Scholar

[3] X.D. Wu, L.J. Zheng, D. Wu, Langmuir 21 (2005) 2665.

Google Scholar

[4] Angelidis N., Electrical potential techniques for damage sensing in carbon fibre composite materials. PhD Thesis, Cranfield University; (2004).

Google Scholar

[5] Gong,P. Wireless Sensor Network as a New Ground Remote Sensing Technology for Environmental Monitoring. J. Remote Sens. 2007, 11, 545-551.

Google Scholar

[6] Cao, X.; Chen,J.; Zhang, Y.; Sun, Y. Development of an Integrated Wireless Sensor Network Micro-EnvironmentalMonitoring System. ISA Trans. 2008, 47, 247-255.

DOI: 10.1016/j.isatra.2008.02.001

Google Scholar

[8] Li, X. H.; Huang, T.S.; Sun, Z.H. Embedded Environment Monitoring System Based on GPRS and SMS. J. Jilin Univ. Eng. Technol. Ed. 2007, 37, 1409-1414.

Google Scholar

[9] Maynard A.A. (2005) Low rates of compost increase vegetable yields, BioCycle 11, 46–48.

Google Scholar

[10] Montemurro F., Maiorana M., Convertini G., Ferri D. (2007) Alternative sugar beet production using shallow tillage and municipal solid waste fertiliser, Agron. Sustain. Dev. 27, 129–137.

DOI: 10.1051/agro:2006032

Google Scholar

[11] Nannipieri P., Greco S., Ceccanti B. (1990) Ecological significance of the biological activity of soil, in: Bollag J.M., Stotzky G. (Eds. ), Soil Biochemistry, Marcel Dekker Inc, New York, USA, Vol. 6, p.293–355.

DOI: 10.1201/9780203739389-6

Google Scholar

[12] Ozores-Hampton M., Obreza T.A., Hochmuth G. (1998) Using composted wastes on Florida vegetable crops. HortTechnology 8, 130–137.

DOI: 10.21273/horttech.8.2.130

Google Scholar

[13] Reider C.R., Herdman W.R., Drinkwater L.E., Janke R. (2000) Yields and nutrient budgets under composts, raw diary manure and mineral fertilizer, Compost Sci. Util. 8, 328–339.

DOI: 10.1080/1065657x.2000.10702006

Google Scholar

[14] Roe N. (1998) Compost utilization for vegetable and fruit crops, HortScience 33, 934–937.

DOI: 10.21273/hortsci.33.6.934

Google Scholar

[15] Sequi P. (1996) The role of composting in sustainable agriculture, in: de Bertoldi M., Sequi P., Lemmes B., Papi T. (Eds. ), The Science of composting, Part 1, Blackie Acad. & Professional, p.23–29.

DOI: 10.1007/978-94-009-1569-5

Google Scholar

[16] SSC (Statistical Service Centre) (2001), Mixed models and multilevel data structures in agriculture, The University of Reading, UK, p.1–27.

Google Scholar

[17] J. Lawrence, L. Li, J. Phys. D: Appl. Phys. 32 (1999) 1075.

Google Scholar

[18] T. Onda, S. Shibuich, K. Tsujii, Langmuir 12 (1996) 2125.

Google Scholar

[19] Monteny GJ, Bannink A, Chadwick D: Greenhouse gas abatement strategies for animal husbandry. Agric Ecosyst Environ 2006, 112(2–3): 163-170.

DOI: 10.1016/j.agee.2005.08.015

Google Scholar