[1]
J.A. George, J.M. George. B.W. Lamar. Packing different-sized circles into a rectangular container. European Journal of Operational Research, 1995, vol. 84: 693–712.
DOI: 10.1016/0377-2217(95)00032-l
Google Scholar
[2]
Stoyan YG, Yaskov GN. Mathematical model and solution method of optimization problem of placement of rectangles and circles taking into account specialconstraints. InternationalTransactions in OperationalResearch 1998; 5(1): 45–57.
DOI: 10.1016/s0969-6016(98)00003-3
Google Scholar
[3]
Yu.G. Stoyan, G. Yas'kov. A mathematical model and a solution method for the problem of placing various-sized circles into a strip. European Journal of Operational Research, 2004, vol. 156: 590–600.
DOI: 10.1016/s0377-2217(03)00137-1
Google Scholar
[4]
Hifi M, Hallah R. A best-local position procedure-based heuristic for the two-dimensional layout problem, Studia Informatica Universalis International Journal on Informatics (SpecialIssue on Cutting, Packing and Knapsacking) 2002, 2(1): 33–56.
Google Scholar
[5]
M. Hifi and R. M'Hallah. Approximate algorithms for constrained circular cutting problems. Computers & Operations Research, 2004, vol. 31: 675–694.
DOI: 10.1016/s0305-0548(03)00020-0
Google Scholar
[6]
W.Q. Huang,Y. Li,H. Akeb, and C.M. Li. Greedy algorithms for packing unequal circles into a rectangular container. Journal of the Operational Research Society, 2005, vol. 56: 539–548.
DOI: 10.1057/palgrave.jors.2601836
Google Scholar
[7]
M. Hifi, V. Th. Paschos, and V. Zissimopoulos. A simulated annealing approach for the circular cutting problem. European Journal of Operational Research, 2004, vol. 159: 430–448.
DOI: 10.1016/s0377-2217(03)00417-x
Google Scholar
[8]
M. Hifi., M'Hallah, R.: A literature review on circle and sphere packing problems: Models and methodologies. Advances in Operations Research 2009 (2009).
DOI: 10.1155/2009/150624
Google Scholar