Designing Parameters of Ion-Implanted Channel Waveguide Using Beam Propagation Method

Article Preview

Abstract:

Channel waveguide formed by multi-energy O2+ ion implantation with different doses is analyzed at both 633 and 1539 nm. It has been demonstrated that the transverse mode number of waveguide is governed by the practical width of the channel waveguide, which depends on not only the channel width from pattern mask, but the lateral straggling of implanted ions. Beam propagation method (BPM) is employed to simulate the possible propagation transverse mode in the waveguides with different widths. The results at 1539 nm show that the waveguide keeps being a single mode waveguide until the width of channel is greater than 15 μm. At 633 nm, TE20 mode can be obtained even the width of channel is very small, and the TE30 mode begins to appear when the width is greater than 9 μm. These simulation results are in good agreement with the experimental results and the calculated results from Marcatilis method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4156-4160

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. D. Townsend, P. J. Chandler and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, UK, 1994 (Reprinted 2006).

Google Scholar

[2] Q. Song, F. Lu, X. Ma, H. Liu, X. Liu, R. Zhang, and X. Wang, MgO: LiNbO3 Planar Waveguide formed by MeV O2+ Implantation and its Annealing Characteristics , Laser Phys. Vol. 18, No. 7, pp.815-818, (2008).

DOI: 10.1134/s1054660x08070013

Google Scholar

[3] G. G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestri, C. Sada, N. Argiolas, M. Bazzan, P. Mazzoldi and R. Guzzi, Structural and compositional characterizationof X-cut LiNbO3 crystal simplanted with high energy oxygen and carbon ions, Nucl. Inst. Meth. B, Vol. 240, pp.174-177, (2005).

DOI: 10.1016/j.nimb.2005.06.110

Google Scholar

[4] P. Moretti, P. Thevenard., K. Wirl, P. Hertel, H. Hesse, E. Krätzig and G. Godefroy, Proton implanted waveguides in LiNbO3, KNbO3 and BaTiO3, Ferroelectrics, Vol. 128, pp.13-18, (1992).

DOI: 10.1080/00150199208015059

Google Scholar

[5] J. Rams, J. Olivares, P. J. Chandler and P. D. Townsend, Mode gaps in the refractive index properties of low-dose ion-implanted waveguides LiNbO3, J. Appl. Phys., Vol. 87, pp.3199-3202, (2000).

DOI: 10.1063/1.372325

Google Scholar

[6] Hui Hu, Fei Lu, Feng Chen, Bo-Rong Shi, Ke-Ming Wang and Ding-Yu Shen, Extraordinary refractive-index increase in lithium niobate caused by low dose ion implantation, Appl. Opt., Vol. 40, p.3759–3761, (2001).

DOI: 10.1364/ao.40.003759

Google Scholar

[7] Fei Lu, Tingting Zhang, Xuelin Wang, Keming Wang, Dingyu Shen and Hongji Ma, Investigation and analysis of a single-mode waveguide formed by multienergy-implanted LiNbO3, Opt. Express, Vol. 13, pp.2256-2262, (2005).

DOI: 10.1364/opex.13.002256

Google Scholar

[8] P. J. Chandler and F. L. Lama, A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation, Opt. Acta, Vol. 33, pp.127-143, (1986).

DOI: 10.1080/713821921

Google Scholar

[9] D. Fluck, D. H. Jundt, P. Günter, M. Fleuster and Ch. Buchal, Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters, J. Appl. Phys., Vol. 74, pp.6023-6031, (1993).

DOI: 10.1063/1.355217

Google Scholar

[10] Xiangzhi Liu, Fei Lu, Feng Chen, Ruifeng Zhang, Hanping Liu, Lei Wang, Gang Fu and Haisong Wang, Reconstruction of extraordinary refractive index profile of O2+ ion-implanted LiNbO3 single-mode channel waveguide based on beam propagation method and image processing, Opt. Commun., Vol. 274, pp.80-84, (2007).

DOI: 10.1016/j.optcom.2007.01.052

Google Scholar

[11] D. Yevick and W. Bardyszewski, Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis, Opt. Lett., Vol. 17, pp.329-330, (1992).

DOI: 10.1364/ol.17.000329

Google Scholar

[12] Marcatili, Dielectric rectangular waveguide and directional coupler for integrated optics, Bell Syst. Tech. J., Vol. 48, pp.2071-2102, (1969).

DOI: 10.1002/j.1538-7305.1969.tb01166.x

Google Scholar

[13] Fei Lu, Gang Fu, Chuanlei Jia, Keming Wang, Hongji Ma and Dingyu Shen, Lithium niobate channel waveguide at optical communication wavelength formed by multienergy implantation, Opt. Express, Vol. 13, pp.9143-9148, (2005).

DOI: 10.1364/opex.13.009143

Google Scholar

[14] J. F. Ziegler, Computer code SRIM, http: /www. srim. org.

Google Scholar

[15] Yuquan Li and Min Cui, Optical Waveguide Theory and Technology (in Chinese, Post & Telecommunications Press, (2002).

Google Scholar