A Novel Prediction Model for WBAN Frequency Nonselective Fading Channel

Article Preview

Abstract:

The prediction of the frequency non-selective WBAN fading channel behaviors is investigated. An novel WBAN prediction channel model is implemented based on Suzuki fading channel and Rice method and the parameters of the proposed model has been adjusted through MEA, MEDS, Jakes and Monte Carlo multipath simulation method. The performance evaluation for the adaptive WBAN channel model based on simulations is given. The validity of the proposed prediction model is confirmed by comparison of the first order statistics of the measured data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

729-733

Citation:

Online since:

February 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] IEEE 802. 15 WPAN Task Group 6 (TG6) Body Area Networks. IEEE P802. 15-08-0780-10-0006 [Online]. Available: http: /www. ieee802. org/15/pub/TG6. html.

Google Scholar

[2] Hamalainen, M.; Taparugssanagorn, A.; Tesi, R.; Iinatti, J.; , Wireless medical communications using UWB, Ultra-Wideband, 2009. ICUWB 2009. IEEE International Conference on , vol., no., pp.485-489, 9-11 Sept. (2009).

DOI: 10.1109/icuwb.2009.5288769

Google Scholar

[3] Viittala, H.; Hamalainen, M.; Iinatti, J.; Taparugssanagorn, A.; , Different experimental WBAN channel models and IEEE802. 15. 6 models: Comparison and effects, Applied Sciences in Biomedical and Communication Technologies, 2009. ISABEL 2009. 2nd International Symposium on , vol., no., pp.1-5, 24-27 Nov. (2009).

DOI: 10.1109/isabel.2009.5373626

Google Scholar

[4] Kenichi Takizawa,; Takahiro Aoyagi,; Jun-ichi Takada,; Norihiko Katayama,; Kamya Yekeh,; Yazdandoost Takehiko,; Kobayashi Ryuji Kohno,; , Channel models for wireless body area networks, Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE , vol., no., pp.1549-1552, 20-25 Aug. (2008).

DOI: 10.1109/iembs.2008.4649465

Google Scholar

[5] Takizawa, K.; Aoyagi, T.; Huan-Bang Li; Takada, J. -i.; Kobayashi, T.; Kohno, R.; , Path loss and power delay profile channel models for wireless body area networks, " Antennas and Propagation Society International Symposium, 2009. APSURSI , 09. IEEE , vol., no., pp.1-4, 1-5 June (2009).

DOI: 10.1109/aps.2009.5172163

Google Scholar

[6] Katayama, N.; Takizawa, K.; Aoyagi, T.; Takada, J. -I.; Huan-Bang Li; Kohno, R.; , Channel model on various frequency bands for wearable Body Area Network, " Applied Sciences on Biomedical and Communication Technologies, 2008. ISABEL , 08. First International Symposium on , vol., no., pp.1-5, 25-28 Oct. (2008).

DOI: 10.1109/isabel.2008.4712617

Google Scholar

[7] Di Franco, F.; Tachtatzis, C.; Graham, B.; Bykowski, M.; Tracey, D.C.; Timmons, N.F.; Morrison, J.; , Current characterisation for ultra low power wireless body area networks, Intelligent Solutions in Embedded Systems (WISES), 2010 8th Workshop on , vol., no., pp.91-96, 8-9 July (2010).

DOI: 10.1109/wises.2010.5548422

Google Scholar

[8] H. Suzuki, A statistical model for urban radio propagation, IEEE Trans. Commun., vol. COM-25, no. 7, p.673–680, (1977).

Google Scholar

[9] E. Lutz, D. Cygan, M. Dippold, F. Dolainsky, and W. Papke, The land mobile satellite communication channel—Recording, statistics, and channel model, IEEE Trans. Veh. Technol., vol. 40, no. 2, p.375–386, (1991).

DOI: 10.1109/25.289418

Google Scholar

[10] W. C. Jakes, Ed. Microwave Mobile Communications. New York: IEEE Press, (1993).

Google Scholar