Overview on Integration Characteristics of Offshore Wind Power

Article Preview

Abstract:

As onshore quality wind resource is drained, it has come into the era that offshore wind power is the most promising field in wind power industry. The key technology and development trend of power prediction, condition monitoring, integration mode, system characteristic and other aspects, is summarized in the paper. The latest technology of integration topology and the unique technology of offshore wind power are focused on, and the development prospect and technology trend about offshore wind power are discussed and expected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-134

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Qianyao Xu, Chongqing Kang: Automation of Electric Power Systems Vol. 35(22). (2011).

Google Scholar

[2] Yue Guo, Zhankun Wang: SINO-GLOBAL ENERGY Vol. 16(03), pp.26-30. (2011).

Google Scholar

[3] Xianliang Zhang: Energy Engineering, pp.35-39. (2013).

Google Scholar

[4] Yunqi Xiao, Shujuan Jia: East China Electric Power Vol. 38(02), pp.277-280. (2010).

Google Scholar

[5] Heyun Lin, Yujing Guo, Beibei Sun: Journal of Southeast University (Natural Science Edition) Vol. 41(04), pp.882-888. (2011).

Google Scholar

[6] Z. Zhang, A. Chen, A. Matveev: High-power Generators for Offshore Wind Turbines. Energy Procedia. (2013).

DOI: 10.1016/j.egypro.2013.07.158

Google Scholar

[7] Yao Zhan: Modern Paint & Finishing Vol. 15(02), pp.15-18. (2012).

Google Scholar

[8] Wenquan Feng, Lei Zhao: Science and Technology Innovation Herald, pp.119-122. (2012).

Google Scholar

[9] Lingling Huang, Yang Fu: Liu Lu: Automation of Electric Power Systems Vol. 37(16). (2013).

Google Scholar

[10] Xiaoxia Zheng, Congjie Ye, Yang Fu: Power System and Clean Energy Vol. 28(11). (2012).

Google Scholar

[11] Zhixin Fu, Yue Yuan: Automation of Electric Power Systems Vol. 36(21), pp.121-129. (2012).

Google Scholar

[12] Hui Li, Xuewei Li, Yaogang Hu, Chao Yang, Bin Zhao: Automation of Electric Power Systems Vol. 36(09), pp.29-34. (2012).

Google Scholar

[13] A Zaher, S.D.J. McArthur, D.G. Infield, Y. Patel: Wind Energy No. 6.

Google Scholar

[14] Xingkai Gu, Gaofeng Fan: Summarization of Wind Power Prediction Technology. Power System Technology Vol. 31(S2), pp.335-338. (2007).

Google Scholar

[15] Shuanglei Feng, Weisheng Wang, Chun Liu, Huizhu Dai: Study on the Physical Approach to Wind Power Prediction. Proceedings of the CSEE Vol. 30(02). (2010).

Google Scholar

[16] Lijie Wang, Xiaozhong Liao, Yang Gao: Summarization of modeling and prediction of wind power generation. Power System Protection and Control Vol. 37(13). (2009).

Google Scholar

[17] Gaofeng Fan, Weisheng Wang, Chun Liu, Huizhu Dai: Wind Power Prediction Based on Artificial Neural Network. Proceedings of the CSEE Vol. 28(34), pp.118-123. (2008).

Google Scholar

[18] Gaofeng Fan, Zheyi Pei, Yaozhong Xin: Wind power prediction achievement and prospect. Electric Power Vol. 44(06), pp.38-41. (2011).

Google Scholar

[19] Miguel Montilla-DJesus, David Santos-Martin, Santiago Arnaltes, Edgardo D. Castronuovo: Renewable Energy No. 1. (2012).

DOI: 10.1016/j.renene.2011.09.021

Google Scholar

[20] Xifan Wang, Chengjun Cao, Zhichao Zhou: Proceedings of the CSEE Vol. 25(12). (2005).

Google Scholar

[21] N. Barberis Negraa, J. Todorovicb, T. Ackermannc: Electrical Power Systems Research Vol. 76(11): pp.916-927. (2006).

Google Scholar

[22] Honglin Zhou, Mingwei Kuang, Jiandong Wu: Dongfang Electric Review Vol. 26(104). (2012).

Google Scholar

[23] Shuang Li, Zhixin Wang, Guoqiang Wang: Proceedings of the CSEE Vol. 33(03). (2012).

Google Scholar

[24] Shuang Li, Zhixin Wang, Guoqiang Wang, Dingguo Wu: Proceedings of the CSEE Vol. 32(04), pp.20-29. (2012).

Google Scholar

[25] Guangfu Tang, Xiang Luo, Xiaoguang Wei: Proceedings of the CSEE Vol. 33(10), pp.8-17. (2013).

Google Scholar

[26] Qingrui Tu, Zheng Xu: East China Electric Power Vol. 37(02), pp.267-271. (2009).

Google Scholar

[27] Jinyu Wen, Xia Chen, Meiqi Yao, Naihu Li, Shumin Sun, Guanglei Li: Power System Protection and Control (2013). Vol. 41(02), pp.55-61.

Google Scholar

[28] Xufeng Yuan, Shijie Cheng: RELAY, (2006). Vol. 34(19), pp.61-67.

Google Scholar

[29] C Meyer, M Hing, A Peterson, etal: Control and design of DC grids for offshore wind farms. IEEE Transactions on Industry Applications Vol. 43(6), pp.1475-1482. (2007).

DOI: 10.1109/tia.2007.908182

Google Scholar

[30] Xiang Li, Minxiao Han: A Coordinated Control Strategy of Series Multi-Terminal VSC-HVDC for Offshore Wind Farm. TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Vol. 28(05), pp.42-48. (2013).

DOI: 10.1049/cp.2012.1996

Google Scholar

[31] Lei Xie, Da Xie, Yanchi Zhang, Qian Ai: Electric Power Automation Equipment Vol. 29(04), pp.58-62. (2009).

Google Scholar

[32] Daqing He, Xu Cai: Research on Transmission of Offshore Wind Farm Based on Collecting Point. East China Electric Power Vol. 39(03), pp.446-449. (2011).

Google Scholar

[33] Deng F, Zhe Chen: Operation and Control of a DC-Grid Offshore Wind Farm under DC Transmission System Faults. Power Delivery, IEEE Transactions on. (2013).

DOI: 10.1109/tpwrd.2013.2261561

Google Scholar

[34] Wang L, Truong D-N: Dynamic Stability Improvement of Four Parallel-Operated PMSG-Based Offshore Wind Turbine Generators Fed to a Power System Using a STATCOM. Power Delivery, IEEE Transactions on. (2013).

DOI: 10.1109/tpwrd.2012.2222937

Google Scholar

[35] Wang L, Truong D-N: Stability Enhancement of DFIG-Based Offshore Wind Farm Fed to a Multi-Machine System Using a STATCOM. Power Systems, IEEE Transactions on. (2013).

DOI: 10.1109/tpwrs.2013.2248173

Google Scholar

[36] Wang L, Thi M. S: Comparisons of Damping Controllers for Stability Enhancement of an Offshore Wind Farm Fed to an OMIB System through an LCC-HVDC Link. Power Systems, IEEE Transactions on. (2013).

DOI: 10.1109/tpwrs.2012.2231705

Google Scholar

[37] Wang L, Wang K-H: Dynamic Stability Analysis of a DFIG-Based Offshore Wind Farm Connected to a Power Grid Through an HVDC Link. Power Systems, IEEE Transactions on. (2011).

DOI: 10.1109/tpwrs.2010.2085053

Google Scholar

[38] Wang L, Thi M S-N: Stability Analysis of Four PMSG-Based Offshore Wind Farms Fed to an SG-Based Power System through an LCC-HVDC Link. Industrial Electronics, IEEE Transactions on. 2013 (No. 6).

DOI: 10.1109/tie.2012.2227904

Google Scholar

[39] Renshen Tan, Ping Yang, Peng He, Jun Wang: Power System Technology Vol. 37(08), pp.2264-2270. (2013).

Google Scholar

[40] Hui Huang, Ming Zheng, Jinbiao Lan: Power System and Clean Energy Vol. 28(11), pp.72-76. (2012).

Google Scholar

[41] Guoqiang Zha, Yue Yuan, Zhixin Fu, Chunjun Sun, Kang Qian, Wenchao Xu: Power System and Clean Energy Vol. 29(02), pp.54-60. (2013).

Google Scholar

[42] Dong Hu, Gang Shi, Xu Cai, Jianfeng Wang: Power System Technology Vol. 33(09), pp.78-83. (2009).

Google Scholar

[43] Chuang Qiu, Hongkun Chen, Yuan Zhou: Engineering Journal of Wuhan University Vol. 44(04), pp.496-499. (2011).

Google Scholar

[44] Atle Rygg Årdal, Tore Undeland, Kamran Sharifabadi: Voltage and Frequency Control in Offshore Wind Turbines Connected to Isolated Oil Platform Power Systems. Energy Procedia. (2012).

DOI: 10.1016/j.egypro.2012.06.104

Google Scholar

[45] Yi Wang, Lirong Zhang, Heming Li, Junpeng Liu: Hierarchical Coordinated Control of Wind Turbine-based DC Microgrid. Proceedings of the CSEE Vol. 33(04), pp.16-24. (2013).

DOI: 10.1109/ipemc.2012.6259163

Google Scholar