Intersubband Transitions in Asymmetric Quantum Wells with External Electric Field

Article Preview

Abstract:

The quantum-confined Stark effect on the optical absorption of intersubband transitions in an asymmetric AlxGa1-xN/In0.3Ga0.7N/GaN quantum wells is investigated by means of the density matrix formulism. The built-in electric field generated by the piezoelectric and spontaneous polarizations competing against to the external electric fields is considered. As the result, the influences of the built-in and external electric fields on the energy potentials and the eigen stares are discussed in detail. When the positive external electric field is applied, the peak values of the absorption coefficients from 3-2, 2-1 and 3-1 transitions are reduced and moved to the lower photon energy levels. With the negative field, the exactly opposite results can be obtained. Moreover, it is indicated that the results of the wavelengths from the 3-2, 2-1 and 3-1 transitions are reduced by the positive external electric field and increased by the negative field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

170-176

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Tchernycheva, L. Nevou, L. Doyennette, F. H. Julien, E. Warde, F. Guillot, E. Monroy, E. Bellet-Amalric, T. Rem-mele and M. Albrecht, Phys. Rev. B. 73 (2006) 125347.

DOI: 10.1063/1.2729997

Google Scholar

[2] L. Zhang, K. X. Guo, Phys. Lett. A. Available online, (2013) 18 June.

Google Scholar

[3] M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, K. Uomi, IEEE J. Sel. Top. Quantum Electron. 3 (1997) 719.

DOI: 10.1109/2944.640627

Google Scholar

[4] Z. Wang, K. Reimann, M. Woerner, T. Elsaesser, D. Hofstetter, J. Hwang, W. J. Schaff, L. F. Eastman, Phys. Rev. Lett. 94 (2005) 037403.

DOI: 10.1103/physrevlett.94.037403

Google Scholar

[5] M. Tchernycheva, L. Nevou, L. Doyennette, F.H. Julien, E. Warde, F. Guillot, E. Monroy, E. Bellet-Amalric, T. Remmele, M. Albrecht, Phys. Rev. B 73 (2006) 125347.

DOI: 10.1016/j.spmi.2006.09.025

Google Scholar

[6] N. Suzuki and N. Iizuka , Jpn. J. Appl. Phys. Part 2 36 (1997) L1006.

Google Scholar

[7] Y. M. Chi, J. J. Shi, J. Lumin. 128 (2002) 1836.

Google Scholar

[8] S. H. Ha, S. L. Ban, J. Zhu, Modern Physics Letters B. 25 (2011) 1847.

Google Scholar

[9] J. M. Li, Y. W. Lu, X. X. Han, J. J. Wu, X.L. Liu, Q. S. Zhu, Z.G. Wang, Physica E. 28 (2005) 453.

Google Scholar

[10] A. Mathur, Y. Ohno, F. Matsukura, K. Ohtani, N. Akiba, T. Kuroiwa, H. Nakajima, Applied Surface Science 113/l 14 (1997) 90.

DOI: 10.1016/s0169-4332(96)00879-3

Google Scholar

[11] S.Y. Lei, Z.G. Dong, B. Shen, G.Y. Zhang, Phys. Lett. A 373 (2008) 136.

Google Scholar

[12] E. Ozturk, I. Sokmen, Optics Communications. 305 (2013) 228.

Google Scholar

[13] Y. M. Huang, C. Lien, J. Appl. Phys. 77 (1995) 3433.

Google Scholar

[14] J. E. Hasbun, T. W. Nee, Phys. Rev. B 44 (1991) 3125.

Google Scholar

[15] M. B. Nardelia, K. Rapcewicz, J. Bernholc, Phys. Rev. B55 (1997) R7323.

Google Scholar

[16] R. Cingolani, A. Botchkarev, H. Tang, H. Morkoc, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, Phys. Rev. B 61 (2000) 2711.

DOI: 10.1063/1.372175

Google Scholar