Enhanced Photocatalytic Activity of H-C-TiO2/Graphene Based on the Synergistic Effect between Surface Defects and Ti-C Bond

Article Preview

Abstract:

The hydrothermal-prepared carbon-doped titanium dioxide/graphene nanocomposite material possessed excellent photocatalytic property after annealling in hydrogen (H-C-TiO2/G). The photocatalytic activity toward decomposing gaseous formaldehyde for H-C-TiO2/G is better than that of C-TiO2 and H-C-TiO2. The microstructure of as-prepared samples was investigated by TEM, Raman spectra and XPS spectra. It is believed that the enhancement of photocatalytic activity is mainly ascribed to the synergistic effect between surface defects and Ti-C bond.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-30

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fujishima and K. Honda: Nature Vol. 37 (1972), p.238.

Google Scholar

[2] Z. Zou, J. Ye, K. Sayama and H. Arakawa: Nature Vol. 414 (2001), p.625−627.

Google Scholar

[3] D.W. Hwang, H.G. Kim, J.S. Lee, J. Kim, W. Li and S.H. Oh: J. Phys. Chem. B Vol. 109 (2004), p.2093−2102.

Google Scholar

[4] J. H. Park, S. Kim and A. J. Bard: Nano. Lett. Vol. 6 (2005), p.24−28.

Google Scholar

[5] M. Kitano, K. Funatsu, M. Matsuoka, M. Ueshima and M. Anpo: J. Phys. Chem. B Vol. 110 (2006), p.25266−25272.

Google Scholar

[6] M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo and J. M. Thomas: Catal. Today Vol. 122 (2007), p.51−61.

DOI: 10.1016/j.cattod.2007.01.042

Google Scholar

[7] J. Sato, N. Saito, Y. Yamada, K. Maeda, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen and Y.J. Inoue: Am. Chem. Soc. Vol. 127 (2005), p.4150−4151.

DOI: 10.1021/ja042973v

Google Scholar

[8] I. Tsuji, H. Kato and A. Kudo: Angew. Chem., Int. Ed. Vol. 44 (2005), p.3565−3568.

Google Scholar

[9] N. Bao, L. Shen, T. Takata and K. Domen: Chem. Mater. Vol. 20, (2007), p.110−117.

Google Scholar

[10] X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang and C. Li: J. Am. Chem. Soc. Vol. 130 (2008), p.7176−7177.

Google Scholar

[11] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen and M. Antonietti: Nat. Mater. Vol. 8 (2009), p.76−80.

Google Scholar

[12] T. Shimidzu, T. Iyoda and Y. Koide: J. Am. Chem. Soc. Vol. 107 (1985), p.35−41.

Google Scholar

[13] R. Abe, K. Hara, K. Sayama, K. Domen and H. J. Arakawa: Photochem. Photobiol. A Vol. 137 (2000), p.63−69.

Google Scholar

[14] K. Takanabe, K. Kamata, X. Wang, M. Antonietti, J. Kubota and K. Domen: Phys. Chem. Chem. Phys. Vol. 12 (2010), p.13020−13025.

DOI: 10.1039/c0cp00611d

Google Scholar

[15] S. Min and G. Lu: J. Phys. Chem. C Vol. 115 (2011), p.13938−13945.

Google Scholar

[16] C.G. Silva, R. Juá rez, T. Marino, R. Molinari and H. García: J. Am. Chem. Soc. Vol. 133 (2010), p.595−602.

Google Scholar

[17] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga: Science Vol. 293 (2001), p.262.

Google Scholar

[18] T. Ohnoa, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura: Applied catalysis A: General Vol. 265 (2004), p.115–121.

DOI: 10.1016/j.apcata.2004.01.007

Google Scholar

[19] Di Li, H. Haneda, N.K. Labhsetwar, S. Hishita and N. Ohashi: Chemical Physical Letters Vol. 401 (2005), p.579–584.

Google Scholar

[20] S. In, A. Orlov, R. Berg, F. Garcı´a, S. Pedrosa-Jimenez, M.S. Tikhov, D.S. Wright and R.M. Lambert: J. Am. Chem. Soc. Vol. 129 (2007), pp.13790-13791.

DOI: 10.1021/ja0749237

Google Scholar

[21] Q. Sun, J. Zhang, P. Wang, J. Zheng, X. Zhang, Y. Cui, J. Feng and Y. Zhu: J. Renewable Sustainable Energy Vol. 4, (2012), p.023104.

Google Scholar

[22] J. D. Bryan, S. M. Heald, S. A. Chambers and D. R. Gamelin: J. Am. Chem. Soc. Vol. 126 (2004), pp.11640-11647.

Google Scholar

[23] X. Yang, C. Cao, K. Hohn, L. Erickson, R. Maghirang, D. Hamal and K. Klabunde: Journal of Catalysis Vol. 252 (2007), p.296–302.

DOI: 10.1016/j.jcat.2007.09.014

Google Scholar

[24] H. Li, D. Wang, H. Fan, P. Wang, T. Jiang and T. Xie: Journal of Colloid and Interface Science Vol. 354 (2011), p.175–180.

Google Scholar

[25] H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li: ACS Nano. Vol. 4 (2010), p.380–386.

Google Scholar

[26] X. Chen, L. Liu, P. Y. Yu and S. S. Mao: Science Vol. 331 (2011), p.746.

Google Scholar

[27] M. Choucair and P. Thordarson, J. A. Stride: Nature Nanotechnology Vol. 4 (2009), p.30.

Google Scholar

[28] X.X. Lin, F. Rong, X. Ji and D.G. Fu: Micro. Meso. Mater. Vol. 142 (2011), p.276.

Google Scholar

[29] J. Yu, G. Dai, Q. Xiang and M. Jaroniec: J. Mater. Chem. Vol. 21 (2011), p.1049–1057.

Google Scholar

[30] L. Zeng, W. Song, M. Li, D. Zeng and C. Xie: Applied Catalysis B: Environmental Vol. 147 (2014), p.490–498.

Google Scholar

[31] Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song, Y. Li, W. Xiao and C. Xie: ACS Catal. Vol. 3 (2013), p.1477−1485.

Google Scholar

[32] T. Kawabe, K. Tabata, E. Suzuki, Y. Yamaguchi and Y. Nagasawa: J. Phys. Chem. B. Vol. 105 (2001), pp.4239-4244.

Google Scholar

[33] M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng and X. Zhao: J. Am. Chem. Soc. Vol. 133 (2011), p.16414–16417.

Google Scholar

[34] S. Zhang, C. Xie, Z. Zou, L. Yang, H. Li and S. Zhang: J. Phys. Chem. C. Vol. 116 (2012), p.19673−19681.

Google Scholar