[1]
E A Starke Jr, J T Staley. Application of modern aluminum alloys to aircraft. Progress in Aerospace Sciences, 1996, 32(2-3): 131-172.
DOI: 10.1016/0376-0421(95)00004-6
Google Scholar
[2]
Yang Liu, Baode Sun, Yongbing dai, Jun Wang. Effects of Chlorine on Aluminum Refining: A Review and an Ab Initio Molecular Dynamics Study. Key Engineering Materials Engineering Materials, 2011, 467 -469: 1404 -1409.
DOI: 10.4028/www.scientific.net/kem.467-469.1404
Google Scholar
[3]
P D Lee, A Chirazi, D See. Modeling microporosity in aluminum–silicon alloys: a review. Journal of Light Metals, 2001, 1 (1): 15-30.
DOI: 10.1016/s1471-5317(00)00003-1
Google Scholar
[4]
E J Murphy, RE Ansel, J J Krajewski. Investment casting utilizing patterns produced by stereolithography. US Patent 4844144, (1989).
Google Scholar
[5]
AMS2175A: Castings, Classification and Inspection Of. SAE international, 2003-07-14.
Google Scholar
[6]
Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003), Materials and Processes in Manufacturing (9th ed. ), Wiley, ISBN 0-471-65653-4.
Google Scholar
[7]
Sias, Fred R. (2006), Lost-wax Casting: Old, New, and Inexpensive Methods (illustrated ed. ), Woodsmere Press, ISBN 978-0-9679600-0-5.
Google Scholar
[8]
eFunda, Inc. Rapid Prototyping: An Overview,. Efunda. com. Retrieved 2013-06-14.
Google Scholar
[9]
Wright, Paul K. 21st Century Manufacturing. New Jersey: Prentice-Hall Inc, (2001).
Google Scholar
[10]
Hayes, Jonathan. Concurrent printing and thermographing for rapid manufacturing: executive summary. EngD thesis, University of Warwick, (2002).
Google Scholar
[11]
Metallic Materials Properties Development and Standardization (MMPDS): Chapter 3. 9. Federal Aviation Administration, (2011).
Google Scholar
[12]
J F Major. Porosity Control and Fatigue Behaviour in A356-T61 Aluminum Alloy. AFS Trans, 1997 97–94: 901–906.
Google Scholar