[1]
G. Basile and G. Marro. A state space approach to non-interacting controls. Ricerche di Automatica, 1(1): 68-77, (1970).
Google Scholar
[2]
G. Basile and G. Marro. Controlled and conditioned invariants in linear system theory. Prentice Hall, New Jersey, (1992).
Google Scholar
[3]
A. Bicchi. Force distribution in multiple whole-limb manipulation. In IEEE International Conference on Robotics and Automation, ICRA, volume 2, pages 196-201, Atlanta, Georgia, USA, (1993).
DOI: 10.1109/robot.1993.292146
Google Scholar
[4]
A. Bicchi, C. Melchiorri, and D. Balluchi. On the mobility and manipulability of general multiple limb robots. IEEE Transactions on Automatic Control, 11(2): 215-228, (1995).
DOI: 10.1109/70.370503
Google Scholar
[5]
A. Bicchi D. Prattichizzo, P. Mercorelli and A. Vicino. Noninteracting force/motion control in general manipulation systems. In Proceedings of the 35th IEEE Conference on Decision Control, CDC '96, Kobe (Japan), December (1996).
DOI: 10.1109/cdc.1996.572865
Google Scholar
[6]
P. Mercorelli. Geometric structures for the parameterization of non-interacting dynamics for multi-body mechanisms. International Journal of Pure and Applied Mathematics - IJPAM, 59(3): 257-273, (2010).
Google Scholar
[7]
P. Mercorelli. A switching kalman filter for sensorless control of a hybrid hydraulic piezo actuator using mpc for camless internal combustion engines. In Proceedings of the 2012 IEEE International Conference on Control Applications, pages 980-985, Dubrovnik, 3-5 October (2012).
DOI: 10.1109/cca.2012.6402717
Google Scholar
[8]
P. Mercorelli and D. Prattichizzo. A geometric procedure for robust decoupling control of contact forces in robotic manipulation. Kybernetika, 39(4): 433-445, (2003).
Google Scholar
[9]
A.S. Morse and W.M. Wonham. Decoupling and pole assignment by dynamic compensation. SIAM Journal on Control, 8(1): 317-337, (1970).
DOI: 10.1137/0308022
Google Scholar
[10]
R.M. Murray, Z. Li, and S.S. Sastry. A mathematical introduction to robotic manipulation. CRC Press, Boca Raton, Florida, (1994).
Google Scholar
[11]
D. Prattichizzo and A. Bicchi. Consistent task specification for manipulation systems with general kinematics. ASME Journal of Dynamics Systems Measurements and Control, 119: 760-767, (1997).
DOI: 10.1115/1.2802388
Google Scholar
[12]
D. Prattichizzo and A. Bicchi. Dynamic analysis of mobility and graspability of general manipulation systems. Transactions on Robotic and Automation, 14(2): 251-218, (1998).
DOI: 10.1109/70.681243
Google Scholar
[13]
D. Prattichizzo and P. Mercorelli. On some geometric control properties of active suspension systems. Kybernetika, 36(5): 549-570, (2000).
Google Scholar
[14]
D. Prattichizzo, P. Mercorelli, A. Bicchi, and A. Vicino. On the geometric control of internal forces in power grasps. In Proceedings of the 36th IEEE Conference of Decirsion and Control, CDC'97, San Diego (CA), (1997).
DOI: 10.1109/cdc.1997.657879
Google Scholar
[15]
J.K. Salisbury and B. Roth. Kinematic and force analysis of articulated mechanical hands. Journal of Mechanisms, Transmissions and Actuation in Design, 105, (1983).
DOI: 10.1115/1.3267342
Google Scholar
[16]
H. Sunan, T.K. Kiong, and L.T. Heng. Applied Predictive Control. Springer-Verlag London, Printed in Great Britain, (2002).
Google Scholar
[17]
W.M. Wonham. Linear multivariable control: a geometric approach. Springer-Verlag, New York, (1979).
Google Scholar
[18]
W.M. Wonham and A.S. Morse. Decoupling and pole assignment in linear multivariable systems: a geometric approach. SIAM Journal on Control, 8(1): 1-18, (1970).
DOI: 10.1137/0308001
Google Scholar