[1]
Misselhorn; Werner E.: Verification of Hardware-in-the-Loop as a Valid Testing Method for Suspension Development, University of Pretoria. (2005).
Google Scholar
[2]
Pierre L.: Models for the Simulation of Dynamic Damper Behaviour, Technical University of Darmstadt. (2013).
Google Scholar
[3]
Sławik, D., P. Czop, A. Król, and G. Wszołek.: Optimization of Hydraulic Dampers with the Use of Design For Six Sigma methodology, Journal of Achievements in Materials and Manufacturing Engineering. (2005).
Google Scholar
[4]
Kaztechnologies: Understanding Your Dampers: A Guide from Jim Kasprzak, http: /www. kaztechnologies. com/fileadmin/user_upload/Kaz_Tech_Tips/FSAE_Damper_Guide-_Jim_Kasprzak_Kaz_Tech_Tip. pdf, Access am 07/20/ (2013).
Google Scholar
[5]
Dixon, John C.: The Shock Absorber Handbook, John Wiley. (2007).
Google Scholar
[6]
Bray international inc.: Engineering Data: Control Valve Terminology, http: /www. genel-makina. com/2008/pdf/BRY. pdf, Access am 06/20/ (2013).
Google Scholar
[7]
Sorniotti, A.; D'Alfio, N.; Morgando, A.: Shock Absorber Modeling and Experimental Testing, SAE 2007 World Congress. (2007).
DOI: 10.4271/2007-01-0855
Google Scholar
[8]
Eisenberg, P.: Mechanics of cavitation in Handbook of Fluid Dynamics, McGraw-Hill. (1961).
Google Scholar
[9]
Kinchin, J. W.; Stock, C. R.: Shock Absorbers, Proceedings of the Institution of Mechanical Engineers, Automobile Division 1947-1970. (1951).
DOI: 10.1243/pime_auto_1951_000_013_02
Google Scholar
[10]
Alonso, M.; Comas, Á.: Modeling a Twin Tube Cavitating Shock Absorber, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. (2006).
DOI: 10.1243/09544070d23104
Google Scholar
[11]
Lee, K.: Numerical Modeling for the Hydraulic Performance Prediction of Automotive Monotube Dampers, Vehicle System Dynamics. (1997).
DOI: 10.1080/00423119708969347
Google Scholar
[12]
Audenino, A. L.; Modeling the Dynamic Behavior of a Motorcycle Damper, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 1989-1996 Vols. 203-210, (1995).
DOI: 10.1243/pime_proc_1995_209_212_02
Google Scholar
[13]
Mollica R.; A Nonlinear Dynamic Model of a Monotube Shock Absorber, Proceedings of the American Control Conference. (1997).
DOI: 10.1109/acc.1997.611892
Google Scholar
[14]
Duym, S., Stiens, R., Baron, G., and Reybrouck, K.: Physical Modeling of the Hysteretic Behavior of Automotive Shock Absorbers, SAE Technical Paper 970101, (1997).
DOI: 10.4271/970101
Google Scholar
[15]
Sorniotti, A.: Shock Absorber Thermal Model: Basic Principles and Experimental Validation, SAE International. (2008).
DOI: 10.4271/2008-01-0344
Google Scholar
[16]
Segel. H.; Lang, H. H.: The Mechanics of Automotive Hydraulic Dampers at High Stroking Frequencies, Vehicle System Dynamics. (1981).
DOI: 10.1080/00423118108968640
Google Scholar
[17]
Morman K.N.: A Modeling and Identification Procedure for the Analysis and Simulation of Hydraulic Shock Absorber Performance, ASME Winter Annual. (1984).
Google Scholar
[18]
Purdy, D. J.: Theoretical and Experimental Investigation into an Adjustable Automotive Damper, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. (2000).
DOI: 10.1243/0954407001527411
Google Scholar
[19]
Alonso, M.; Comas, Á.: Thermal Model of a Twin-tube Cavitating Shock Absorber, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. (2008).
DOI: 10.1243/09544070jauto829
Google Scholar