Effect of Structural Performance of Bridge Based on Fatigue S-N Curves

Article Preview

Abstract:

The probability of S-N curve is one of the basic material fatigue reliability analysis and design. Determination of S-N curve is the basis of the fatigue life of obedience lognormal based on the application of statistical methods to fit the experimental data obtained fatigue. This paper studies the construction of reinforced Fatigue S-N Curves overloading effect on the structural performance of the bridge. In this paper, the fatigue reliability theory as a useful supplement, has some theoretical significance and value of work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1603-1606

Citation:

Online since:

April 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bocciarelli, P. Colombi, G. Fava, C. Poggi: Fatigue performance of tensile steel members strengthened with CFRP plates, Composite Structures, Vol. 87 (2009), pp.334-343.

DOI: 10.1016/j.compstruct.2008.02.004

Google Scholar

[2] M. Raoof, T. J. Davies: The riddle of free-bending fatigue at end terminations to spiral strands, Journal of Constructional Steel Research, Vol. 95 (2014), pp.256-262.

DOI: 10.1016/j.jcsr.2013.12.006

Google Scholar

[3] R. A. Rousan, M. Issa: Fatigue performance of reinforced concrete beams strengthened with CFRP sheets, Construction and Building Materials, Vol. 25 (2011), pp.3520-3529.

DOI: 10.1016/j.conbuildmat.2011.03.045

Google Scholar

[4] M. Mohammad, S. Abdullah, N. Jamaludin, O. Innayatullah: Predicting the fatigue life of the SAE 1045 steel using an empirical Weibull-based model associated to acoustic emission parameters, Materials & Design, Vol. 54 (2014), pp.1039-1048.

DOI: 10.1016/j.matdes.2013.09.021

Google Scholar

[5] J. R. Casas, C. C. Minguillon: Probabilistic response of prestressed concrete bridges to fatigue, Engineering Structures, Vol. 20 (1998), pp.940-947.

DOI: 10.1016/s0141-0296(97)00187-9

Google Scholar

[6] T. Makita, E. Brühwiler: Tensile fatigue behaviour of Ultra-High Performance Fibre Reinforced Concrete combined with steel rebars (R-UHPFRC), International Journal of Fatigue, Vol. 59 (2014), pp.145-152.

DOI: 10.1016/j.ijfatigue.2013.09.004

Google Scholar

[7] B. M. Imam, T. D. Righiniotis: Fatigue evaluation of riveted railway bridges through global and local analysis, Journal of Constructional Steel Research, Vol. 66 (2010), pp.1411-1421.

DOI: 10.1016/j.jcsr.2010.04.015

Google Scholar

[8] S. Goel, S.P. Singh, P. Singh: Flexural fatigue strength and failure probability of Self Compacting Fibre Reinforced Concrete beams, Engineering Structures, Vol. 40 (2012), pp.131-140.

DOI: 10.1016/j.engstruct.2012.02.035

Google Scholar

[9] X. Qian, Y. Petchdemaneengam, S. Swaddiwudhipong, P. Marshall, Z. Ou, C. T. Nguyen: Fatigue performance of tubular X-joints with PJP+ welds: I-Experimental study, Journal of Constructional Steel Research, Vol. 90 (2013), pp.49-59.

DOI: 10.1016/j.jcsr.2013.07.016

Google Scholar

[10] W. Zhang, C.S. Cai, F. Pan: Nonlinear fatigue damage assessment of existing bridges considering progressively deteriorated road conditions, Engineering Structures, Vol. 56 (2013), p.1922-(1932).

DOI: 10.1016/j.engstruct.2013.06.027

Google Scholar

[11] T. D. Righiniotis, B. M. Imam, M. K. Chryssanthopoulos: Fatigue analysis of riveted railway bridge connections using the theory of critical distances, Engineering Structures, Vol. 30 (2008), pp.2707-2715.

DOI: 10.1016/j.engstruct.2008.03.005

Google Scholar

[12] K. Ghahremani, S. Walbridge: Fatigue testing and analysis of peened highway bridge welds under in-service variable amplitude loading conditions, International Journal of Fatigue, Vol. 33 (2011), pp.300-312.

DOI: 10.1016/j.ijfatigue.2010.09.004

Google Scholar