[1]
M. Bocciarelli, P. Colombi, G. Fava, C. Poggi: Fatigue performance of tensile steel members strengthened with CFRP plates, Composite Structures, Vol. 87 (2009), pp.334-343.
DOI: 10.1016/j.compstruct.2008.02.004
Google Scholar
[2]
M. Raoof, T. J. Davies: The riddle of free-bending fatigue at end terminations to spiral strands, Journal of Constructional Steel Research, Vol. 95 (2014), pp.256-262.
DOI: 10.1016/j.jcsr.2013.12.006
Google Scholar
[3]
R. A. Rousan, M. Issa: Fatigue performance of reinforced concrete beams strengthened with CFRP sheets, Construction and Building Materials, Vol. 25 (2011), pp.3520-3529.
DOI: 10.1016/j.conbuildmat.2011.03.045
Google Scholar
[4]
M. Mohammad, S. Abdullah, N. Jamaludin, O. Innayatullah: Predicting the fatigue life of the SAE 1045 steel using an empirical Weibull-based model associated to acoustic emission parameters, Materials & Design, Vol. 54 (2014), pp.1039-1048.
DOI: 10.1016/j.matdes.2013.09.021
Google Scholar
[5]
J. R. Casas, C. C. Minguillon: Probabilistic response of prestressed concrete bridges to fatigue, Engineering Structures, Vol. 20 (1998), pp.940-947.
DOI: 10.1016/s0141-0296(97)00187-9
Google Scholar
[6]
T. Makita, E. Brühwiler: Tensile fatigue behaviour of Ultra-High Performance Fibre Reinforced Concrete combined with steel rebars (R-UHPFRC), International Journal of Fatigue, Vol. 59 (2014), pp.145-152.
DOI: 10.1016/j.ijfatigue.2013.09.004
Google Scholar
[7]
B. M. Imam, T. D. Righiniotis: Fatigue evaluation of riveted railway bridges through global and local analysis, Journal of Constructional Steel Research, Vol. 66 (2010), pp.1411-1421.
DOI: 10.1016/j.jcsr.2010.04.015
Google Scholar
[8]
S. Goel, S.P. Singh, P. Singh: Flexural fatigue strength and failure probability of Self Compacting Fibre Reinforced Concrete beams, Engineering Structures, Vol. 40 (2012), pp.131-140.
DOI: 10.1016/j.engstruct.2012.02.035
Google Scholar
[9]
X. Qian, Y. Petchdemaneengam, S. Swaddiwudhipong, P. Marshall, Z. Ou, C. T. Nguyen: Fatigue performance of tubular X-joints with PJP+ welds: I-Experimental study, Journal of Constructional Steel Research, Vol. 90 (2013), pp.49-59.
DOI: 10.1016/j.jcsr.2013.07.016
Google Scholar
[10]
W. Zhang, C.S. Cai, F. Pan: Nonlinear fatigue damage assessment of existing bridges considering progressively deteriorated road conditions, Engineering Structures, Vol. 56 (2013), p.1922-(1932).
DOI: 10.1016/j.engstruct.2013.06.027
Google Scholar
[11]
T. D. Righiniotis, B. M. Imam, M. K. Chryssanthopoulos: Fatigue analysis of riveted railway bridge connections using the theory of critical distances, Engineering Structures, Vol. 30 (2008), pp.2707-2715.
DOI: 10.1016/j.engstruct.2008.03.005
Google Scholar
[12]
K. Ghahremani, S. Walbridge: Fatigue testing and analysis of peened highway bridge welds under in-service variable amplitude loading conditions, International Journal of Fatigue, Vol. 33 (2011), pp.300-312.
DOI: 10.1016/j.ijfatigue.2010.09.004
Google Scholar