[1]
D. Gesbert, M. Shafi, S. Da-shan, P.J. Smith and A. Naguib, From theory to practice: an over view of MIMO space-time code wire systems, Selected Areas in communications, IEEE Journal on, vol. 21, no. 3, pp.281-302, April (2003).
DOI: 10.1109/jsac.2003.809458
Google Scholar
[2]
H. Taewon, Y. Chenyang, W. Gang, L. Shaoqian and G. Ye Li, OFDM and its wireless applications: A survey, Vehicular Technology, IEEE Transactions on, vol. 58, no. 4, pp.1673-1694, May (2009).
DOI: 10.1109/tvt.2008.2004555
Google Scholar
[3]
G.L. Stuber, J.R. Barry, S.W. McLaughlin, Ye Li, M.A. Ingram and T.G. Pratte, Broadband MIMO-OFDM wireless communications, proceedings of the IEEE, vol. 92, no. 2, pp.271-294, February (2004).
DOI: 10.1109/jproc.2003.821912
Google Scholar
[4]
Y. Eisenberg and J. Tabrikian. Low complexity bit and power allocate for MIMO-OFDM system using space-frequency beamforming, Signal Processing, vol. 93, no. 7, pp.1961-1975, July (2013).
DOI: 10.1016/j.sigpro.2012.12.009
Google Scholar
[5]
K.P. Bagadi and S. Das, Neural network-based adaptive multiuser detection schemes in SDMA-OFDM system for wireless application, Neural Computing and Applications, vol. 23, no. 3-4, pp.1071-1082, September (2013).
DOI: 10.1007/s00521-012-1033-z
Google Scholar
[6]
K. Ghanem and P. Hall, Capacity evaluation of on-body channels using MIMO antennas, Wireless and Mobile Computing, Networking and Communications, IEEE, pp.185-190, October (2009).
DOI: 10.1109/wimob.2009.89
Google Scholar
[7]
L.L. Wu, Z.D. Zhou and B. Vucetic, A low complexity limited feedback scheme in MIMO broadcast channels, Personal, Indoor and Mobile Radio Communications, IEEE, pp.2449-2453, September (2009).
DOI: 10.1109/pimrc.2009.5450299
Google Scholar
[8]
M. Sharma and G. Saini, Low complexity MMSE based channel estimation technique in OFDM systems, Computational Intelligence and Computing Research, IEEE, pp.1-4, December (2010).
DOI: 10.1109/iccic.2010.5705903
Google Scholar
[9]
G.J. Won, H.C. Kyung and S.C. Yong, An equalization technique for orthogonal frequency- division multiplexing systems in time-variant multipath channel, Communications, IEEE Transactions on, vol. 47, no. 1, pp.27-32, January (1999).
DOI: 10.1109/26.747810
Google Scholar
[10]
O.B. Belkacem, R. Zayani, M.L. Ammari, R. Bouallegue and D. Roviras, Neural network equalization for frequency selective nonlinear MIMO channels, Computers and Communications, IEEE, pp.18-22, July (2012).
DOI: 10.1109/iscc.2012.6249262
Google Scholar
[11]
H. Jie and Y. Ling. Semi-blind channel estimation of MIMO-OFDM systems based on RBF network, Conference on Wireless Mobile and Computing, IET International Communication, pp.187-191, November (2011).
DOI: 10.1049/cp.2011.0872
Google Scholar
[12]
G. Charalabopoulos, P. Stavroulakis and A.H. Aghvami, A frequency-domain neural network equalizer for OFDM, Global Telecommunications Conference, IEEE, vol. 2, pp.571-575, December (2003).
DOI: 10.1109/glocom.2003.1258303
Google Scholar
[13]
S.J. Nawaz, S. Mohisin and A.A. ikaram, Neural network based MIMO-OFDM channel equalization using comb-type pilot arrangement, Future computer and communication, International Conference on, pp.36-41, April (2009).
DOI: 10.1109/icfcc.2009.136
Google Scholar
[14]
G.B. Huang ,Q.Y. Zhu and C.K. Siew, Extreme learning machine: theory and applications, Neurocomputing, vol. 70, no. 1-3, pp.489-501. December (2006).
DOI: 10.1016/j.neucom.2005.12.126
Google Scholar
[15]
G.B. Huang , Q.Y. Zhu and C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, Neural networks, IEEE International Joint Conference on, vol. 2, pp.985-990. July (2004).
DOI: 10.1109/ijcnn.2004.1380068
Google Scholar
[16]
G.B. Huang and L. Chen, Convex incremental extreme learning machine, Neurocomputing, vol. 70, no. 16-18, pp.3056-3062. October (2007).
DOI: 10.1016/j.neucom.2007.02.009
Google Scholar
[17]
Y.G. Wang, F. L. Cao and Y.B. Yuan, A study on effectiveness of extreme learning machine, Neurocomputing, vol. 74, no. 16, pp.2483-2490. September (2011).
DOI: 10.1016/j.neucom.2010.11.030
Google Scholar
[18]
G.B. Huang, L. Chen and C.K. Siew, Universal approximate using incremental constructive feedforward networks with random hidden nodes, Neural Network, IEEE Transactions on, vol. 17, no. 4, pp.879-892. July (2006).
DOI: 10.1109/tnn.2006.875977
Google Scholar
[19]
I.G. Muhammad, K.E. Tepe and E. Abdel-Raheem, QAM equalization and symbol detection in OFDM systems using extreme learning machine, Neural Computing and Application, vol. 22, no. 3-4, pp.491-500. March (2013).
DOI: 10.1007/s00521-011-0796-y
Google Scholar
[20]
G.B. Huang, H. Zhou, X. Ding and R. Zhang, Extreme learning machine for regression and multiclass classification, System, Man, Cybern., Part B, Cybern., IEEE Transaction on, vol. 42, no. 2, pp.513-529, April (2012).
DOI: 10.1109/tsmcb.2011.2168604
Google Scholar