The Signal Separation for MIMO Radar Based on Particle Filter Algorithm

Article Preview

Abstract:

The orthogonality of transmitting signals affects the performance of Muitple Input Mulitiple Output (MIMO) radar system. The chaotic signals was adopted at the transmitter to achieve the approximate orthogonal. A signal separation aprroach for MIMO Radar based on the particle filter in Non-Gaussian clutter environment was proposed. Before the match filter (MF), the particle filter is quite suitable for chaotic signals separation. Simulation results show that the proposed algorithm can realize a good separation performance. At the receiver, the coherent processing results show that this method has the better target resolution ability than the tranditional match filter alone.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-38

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fishler E, Haimovich A, Blum R, Cimini L, Chizhik D and Valenzuela. MIMO radar: An idea whose time has come. Proceedings of 2004 IEEE International Conference on Radar, Philadelphia, PA, United States, 26-29 Apr. 2004, 71-78.

DOI: 10.1109/nrc.2004.1316398

Google Scholar

[2] Nikolaus H. Lehmann, Alexander M. Haimovich, Rick S. Blum, Len Cimini. High Resolution Capabilities of MIMO Radar. Fortieth Asilomar Conference on Signal, Systems and Computer (ACSSC), Pacific Grove CA, Oct. 29-Nov. 1, 2006: 25-30.

DOI: 10.1109/acssc.2006.356576

Google Scholar

[3] Zhu Xiaobo, Wang Shouyong, Li Xutao, Fang Qianxue. MIMO radar signal separation in non-Gaussian clutter(in Chinese). System Engineering and Electronics. 2010, 32 (6): 1210-1214.

Google Scholar

[4] FENG Xun, WANG Shou-yong, YANG Jun, DU Peng-fei, ZHU Xiao-bo. MIMO Radar Signal Separation Algorithm in Non-Gaussian Clutter. 2011IEEE international radar conference: 979- 983.

DOI: 10.1109/cie-radar.2011.6159715

Google Scholar

[5] Marie Strom, Mats Viberg, Kent Falk. Transmit and Receive Filter Optimization for Wideband MIMO Radar 2011 IEEE CAMSAP. pp: 9-10.

DOI: 10.1109/camsap.2011.6136056

Google Scholar

[6] Haowen Chen, Zhaokun Qiu, Lei Nie, Xiang Li, Zhaowen Zhuang. Lorenz-based quasi-orthogonal waveforms for MIMOradar systems. Radar Conference(EuRAD), 2011: 289-292.

Google Scholar

[7] Yang J.; Peng Y.X.; Qin Y.L.; Wang H.Q. Optimising chaotic phase coded waveforms for MIMO radar. IET Radar Conference on Radar system. 2012: 1-4.

DOI: 10.1049/cp.2012.1586

Google Scholar

[8] M. Sanjeev Arulampalam , Simon Maskell, Neil Gordon, Tim Clapp, A Tutorial on Particle Filters for On-line Nonlinear/Non-Gaussian Bayesian Tracking, Journal of IEEE Transaction on Signal Processing, 2002, 50(2): 174-188.

DOI: 10.1109/78.978374

Google Scholar

[9] Djuric, P.M.; Kotecha, J.H.; Jianqui Zhang; Yufei Huang; Ghirmai, T.; Bugallo, M.F.; Miguez, J. Particle filter. IEEE Signal processing, 2003, 20(5): 19-38.

DOI: 10.1109/msp.2003.1236770

Google Scholar

[10] A Doucet, S Godsill, and C Andrieu, On sequential Monte Carlo sampling methods for Bayesian filtering, Statist. Comput., 2000, 10(3): 197-208.

Google Scholar

[11] F. Cong, X. Xu, S. Zhou, S. Du and X. Shi. Particle filtering based noisy blind source separation. Electonics letters, 2007, 43(9): 547-549.

DOI: 10.1049/el:20070304

Google Scholar