[1]
S. Haykin, Cognitive radio: Brain-empowered wireless communications, IEEE Journal on Selected Areas in Communications, Vol. 23, No. 2, 2005, pp.201-220.
DOI: 10.1109/jsac.2004.839380
Google Scholar
[2]
T. V. Krishna and A. Das, A survey on MAC protocols in OSA networks, Computer Networks, 53, 2009, pp.1377-1394.
DOI: 10.1016/j.comnet.2009.01.003
Google Scholar
[3]
N. Shah, T. Kamakaris, U. Tureli, and M. Buddhikot, Wideband spectrum sensing probe for distributed measurements in cellular band, Proceedings of the first international workshop on Technology and policy for accessing spectrum, No. 13, 2006, pp.1-6.
DOI: 10.1145/1234388.1234401
Google Scholar
[4]
S. Yarkan, and H. Arslan, Binary time series approach to spectrum prediction for cognitive radios, IEEE 66th Vehicular Technology Conference, 2007, pp.1563-1567.
DOI: 10.1109/vetecf.2007.332
Google Scholar
[5]
I.A. Akbar, and W. H Tranter, Dynamic spectrum allocation in cognitive radio using hidden Markov models: Poisson distributed case, SoutheastCon Proceedings. IEEE, 2007, pp.196-201.
DOI: 10.1109/secon.2007.342884
Google Scholar
[6]
Li Y, Dong Y, Zhang H, et al, Spectrum usage prediction based on high-order Markov model for cognitive radio networks, IEEE 10th International Conference on CIT, 2010, pp.2784-2788.
DOI: 10.1109/cit.2010.464
Google Scholar
[7]
V.K. Tumuluru, D. Niyato, and Ping Wang, A neural network based spectrum prediction scheme for cognitive radio, IEEE International Conference on ICC, 2010, pp.1-5.
DOI: 10.1109/icc.2010.5502348
Google Scholar
[8]
Yin Liang, et al, Spectrum behavior learning in Cognitive Radio based on artificial neural network, MILITARY COMMUNICATIONS CONFERENCE, 2011, pp.25-30.
DOI: 10.1109/milcom.2011.6127671
Google Scholar
[9]
M. I. Taj, and M. Akil, Cognitive Radio spectrum evolution prediction using artificial neural networks based multivariate time series modeling, Wireless Conference 2011 - Sustainable Wireless Technologies (European Wireless) 11th European, 2011, pp.670-675.
Google Scholar
[10]
A. Katidiotis, K. Tsagkaris, and P. Demestichas, Performance evaluation of artificial neural network-based learning schemes for cognitive radio systems, Computers & Electrical Engineering, Vol. 36, No. 3, 2010, pp.518-535.
DOI: 10.1016/j.compeleceng.2009.12.005
Google Scholar
[11]
C.B. Xu, et al, A Novel Spectrum Prediction Algorithm for Cognitive Radio System Based on Chaotic Neural Network, Journal of Computational Information Systems, Vol. 9, no. 1, 2013, pp.313-320.
Google Scholar
[12]
Yang Ling, et al, Spectrum Prediction Based on Echo State Network and Its Improved Form, Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol. 1, 2013, pp.172-176.
DOI: 10.1109/ihmsc.2013.48
Google Scholar
[13]
M.Z. Hong, et al, A new adaptive backpropagation algorithm based on Lyapunov stability theory for neural networks, Neural Networks, Vol. 17, No. 6, 2006, pp.1580-1591.
DOI: 10.1109/tnn.2006.880360
Google Scholar
[14]
G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, Neural Networks, vol. 2, 2004, p.985–990.
DOI: 10.1109/ijcnn.2004.1380068
Google Scholar
[15]
G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: theory and applications, Neurocomputing , Vol. 70, No. 1-3, 2006, pp.489-501.
DOI: 10.1016/j.neucom.2005.12.126
Google Scholar
[16]
G.B. Huang, D.H. Wang, Y Lan, Extreme learning machines: a survey, International Journal of Machine Learning and Cybernetics, 2011, pp.107-122.
Google Scholar
[17]
Y. Miche, et al, OP-ELM: optimally pruned extreme learning machine, Neural Networks, IEEE Transactions on, Vol. 21, No. 1, 2010, pp.158-162.
DOI: 10.1109/tnn.2009.2036259
Google Scholar
[18]
G.B. Huang, C. Lei, Convex incremental extreme learning machine, Neurocomputing , Vol. 70, No. 16–18, 2007, pp.3056-3062.
DOI: 10.1016/j.neucom.2007.02.009
Google Scholar
[19]
G.B. Huang, C. Lei, C.K. Siew, Universal approximation using incremental constructive feedforward networks with random hidden nodes, Neural Networks, IEEE Transactions on , Vol. 17, No. 4, 2006, pp.879-892.
DOI: 10.1109/tnn.2006.875977
Google Scholar
[20]
G.B. Huang, C.K. Siew, Extreme learning machine: RBF network case, Control, Automation, Robotics and Vision Conference, Vol. 2 , 2004, pp.1029-1036.
DOI: 10.1109/icarcv.2004.1468985
Google Scholar
[21]
G.B. Huang, et al, Can threshold networks be trained directly?, Circuits and Systems II: Express Briefs, Vol. 53, No. 3, 2006, pp.187-191.
DOI: 10.1109/tcsii.2005.857540
Google Scholar
[22]
C.R. Rao, S.K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiley (New York), (1972).
Google Scholar
[23]
T. Similä, J. Tikka, Multiresponse sparse regression with application to multidimensional scaling, Artificial Neural Networks: Formal Models and Their Applications, vol. 36, 2005, pp.97-102.
DOI: 10.1007/11550907_16
Google Scholar
[24]
R.H. Myers, Classical and Modern Regressionwith Applications, Pacific Grove, (1990).
Google Scholar
[25]
G. Bontempi, M. Birattari, H. Bersini, Recursive lazy learning for modeling and control, Lecture Notes in Computer Science, Vol. 1398, 1998, pp.292-303.
DOI: 10.1007/bfb0026699
Google Scholar
[26]
Hoyhtya, Marko, P. Sofie, M. Aarne, Performance improvement with predictive channel selection for cognitive radios, Cognitive Radio and Advanced Spectrum Management, 2008, pp.1-5.
DOI: 10.1109/cogart.2008.4509983
Google Scholar