[1]
R. Henstock. Theory of Integration. Butterworth, London,; (1963).
Google Scholar
[2]
J. Kurzweil. Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Mathematical Journal 7 (1957), 418–46.
DOI: 10.21136/cmj.1957.100258
Google Scholar
[3]
P. Lee. Lanzhou Lectures on Henstock Integration. World Scientific, Singapore, New Jersey, London, Hongkong; (1989).
Google Scholar
[4]
C. Wu, Z. Gong. On Henstock intergrals of interval-valued and fuzzy number valued functions. Fuzzy Sets and Syst. 115 (2000), 77-91.
DOI: 10.1016/s0165-0114(98)00277-2
Google Scholar
[5]
Z. Gong. On the problem of characterizing derivatives for the fuzzy-valued functions (II). Fuzzy Sets and Syst. 145 (2004), 381-93.
DOI: 10.1016/s0165-0114(03)00264-1
Google Scholar
[6]
Z. Gong, Y. Shao The Controlled Convergence Theorems for the Strong Henstock Integrals of Fuzzy-Number-Valued Functions. Fuzzy Sets and Syst. 160 (2009) 1528-46.
DOI: 10.1016/j.fss.2008.10.013
Google Scholar
[7]
B. Bede, S. Gal, Generalizations of the Differentiability of Fuzzy-Number-Valued -Functions with Applications to Fuzzy Differential Equation. Fuzzy Sets and Syst. 151 (2005), 581-599.
DOI: 10.1016/j.fss.2004.08.001
Google Scholar
[8]
P.S. Bullen: The Burkill approximately continuous integral. J. Austral. Math. Soc. (Ser. A) 35 (1983), 236–253.
DOI: 10.1017/s1446788700025738
Google Scholar
[9]
T.S. Chew, K. Liao: The descriptive definitions and properties of the AP-integral and their application to the problem of controlled convergence. Real Anal. Exch. 19 (1994), 81–97.
DOI: 10.2307/44153816
Google Scholar
[10]
K. Liao: On the descriptive definition of the Burkill approximately continuous integral. Real Anal. Exch. 18 (1993), 253–260.
DOI: 10.2307/44133066
Google Scholar
[11]
Y.J. Lin: On the equivalence of four convergence theorems for the AP-integral. Real Anal. Exch. 19 (1994), 155–164.
Google Scholar
[12]
J.M. Park, C.G. Park, J.B. Kim, D.H. Lee, and W.Y. Lee: The s-Perron, sap-Perron and ap-McShane integrals. Czechoslovak Math. J. 54(129) (2004), 545–557.
DOI: 10.1007/s10587-004-6407-7
Google Scholar