Microscintillator of Ce Doped β-NaLuF4 in Uniform Hexagonal Prism Morphology by a Facile Hydrothermal Method

Article Preview

Abstract:

To explore micro-or nanoscintillator with a controllable architecture, a novel facile hydrothermal method easy for commercial run was used to synthesize pure and Ce doped β-NaLuF4 microcrystals at 453K. The morphology of uniform hexagonal prism with 3.3μm in diameter and 1.4 μm in thickness, respectively, is presented by the results of scanning electron microscopy (SEM). Powder X-ray diffraction (PXRD) patterns show the products are both pure hexagonal phase. Different from the undoped product without any irradiation, the Ce doped product has given strong broad band emission attributed to 5d4f transition of Ce3+, which can be potentially used as scintillator for biomedical imaging and detectors for high energy such as X-ray and γray. This synthetical strategy extends the understanding about nanomaterial chemistry and can be also useful for other systems such as fluorides, oxides and sulfides.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

220-224

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Wang, J. Zhuang, Q. Peng and Y. D. Li: Inorg. Chem., Vol. 45 (2006), p.6661–6665.

Google Scholar

[2] S. Heer, O. Lehmann, M. Haase and H. U. Gudel: Angew. Chem., Int. Ed., Vol. 42 (2003), 3179–3182.

Google Scholar

[3] Z. M. Chen, Z. R. Geng, D. L. Shao, Y. H. Mei and Z. L. Wang: Anal. Chem., Vol. 81 (2009), p.7625–7631.

Google Scholar

[4] G. S. Yi, H. C. Lu, S. Y. Zhao, Y. Ge, W. J. Yang, D. P. Chen and L. H. Guo: Nano Lett., Vol. 4 (2004), p.2191–2196.

Google Scholar

[5] X. J. Liu, H. L. Li, R. J. Xie, Y. Zeng, L. P. Huang J. : Luminescence , Vol. 124 (2007), p.75–80.

Google Scholar

[6] B. K. Cha, S. J. Lee, P. Muralidharan, J. Y. Kim, D. K. Kim, D. H. Lee: Nucl. Instrum. Methods Phys. Res., Sect. A, Vol. 619 (2010), p.174–176.

Google Scholar

[7] L. Y. Wang, R. X. Yan, Z. Y. Huo, L. Wang, J. H. Zeng, J. Bao,X. Wang, Q. Peng and Y. D. Li: Angew. Chem., Int. Ed., Vol. 44 (2005), p.6054–6057.

DOI: 10.1002/anie.200501907

Google Scholar

[8] H. Maas, A. Currao and G. Calzaferri: Angew. Chem., Int. Ed., Vol. 41 (2002), p.2495–2496.

Google Scholar

[9] P. Dorenbos: Phys. Rev. B, Vol. 64 (2001), p.125117.

Google Scholar

[10] H.X. Mai, Y.W. Zhang, R. Si, Z.G. Yan, L.D. Sun, L.P. You, C.H. Yan: J. Am. Chem. Soc., Vol. 128 (2006), p.6426–6436.

Google Scholar

[11] R.X. Yan, Y.D. Li: Adv. Funct. Mater., Vol. 15 (2005), p.763–770.

Google Scholar

[12] N. Niu, P. P. Yang, X. Zhang, S. L. Gaia and J. Lin: J. Mater. Chem., Vol. 22 (2012), p.10889–10899.

Google Scholar

[13] Z. Q. Li and Y. Zhang: Nanotechnology, Vol. 19 (2008), p.345606.

Google Scholar

[14] Y. Wei, F. Q. Lu, X. R. Zhang and D. P. Chen: Chem. Mater., Vol. 18 (2006), p.5733–5737.

Google Scholar

[15] Y. Yang, Y. Sun, T.Y. Cao, J.J. Peng, Y. Liu, Y.Q. Wu, W. Feng, Y.J. Zhang, F.Y. Li: Biom., Vol. 34 (2013) p.774–783.

Google Scholar

[16] S. J. Zeng, J. J. Xiao, Q. B. Yang and J. H. Hao: J. Mater. Chem., Vol. 22 (2012), p.9870–9874.

Google Scholar

[17] F. Shi, J. S. Wang, X. S. Zhai, D. Zhao and W. P. Qin: Cryst. Eng. Comm., Vol. 13 ( 2011), p.3782–3787.

Google Scholar