[1]
P. Marites, M. Zhou, and C. Li: Acc. Chem. Res. Vol. 10 (2011), pp.947-956.
Google Scholar
[2]
H. Wang, Y.L. Zhao, and G. Nie. : Fron. Mater. Sci. Vol. 7 (2013), pp.118-128.
Google Scholar
[3]
G.V. Maltzahn, et al: Nat. Mater. Vol. 10 (2011), pp.545-552.
Google Scholar
[4]
A. Joshi, et al: Nat. Nanotech. Vol. 3 (2007), pp.41-45.
Google Scholar
[5]
J. Oh, H. Yoon, and JH. Park: Biome. Eng. Lett. Vol. 3 (2013), pp.67-73.
Google Scholar
[6]
E. Hutter and JH. Fendler: Adv Mater Vol. 16 (2004), pp.1685-1706.
Google Scholar
[7]
E. Ozbay: Science Vol. 311 (2006), pp.189-193.
Google Scholar
[8]
W. L . Barnes, A. Dereux, and TW. Ebbesen: Nature Vol. 424. 6950 (2003), pp.824-830.
DOI: 10.1038/nature01937
Google Scholar
[9]
J. M Luther, et al: Nature materials Vol. 10 (2011), pp.361-366.
Google Scholar
[10]
H. F. Ghaemi, et al: Phys. Rev. Vol. 58 (1998), p.6779.
Google Scholar
[11]
P. Pattnaik: Appl. Biochem. Biotechnol Vol. 126 (2005), pp.79-92.
Google Scholar
[12]
L. S. Zhang, et al: Mater. Rev. Vol. 26 (2012), pp.5-9.
Google Scholar
[13]
D. Peer, et al: Nat. Nanotech. Vol. 2 (2007), pp.751-760.
Google Scholar
[14]
X. H. Huang and ES. Mostafa: J. Adv Res. Vol. 1 (2010), pp.13-28.
Google Scholar
[15]
C. M. Pitsillides, et al: Biophys. J. Vol. 84 (2003), pp.4023-4032.
Google Scholar
[16]
J. You, G. D. Zhang, and L. Chun: ACS Nano. Vol. 4 (2010), pp.1033-1041.
Google Scholar
[17]
E. C. Cho, Q. Zhang, and Y. Xia. Nat. Nanotech Vol. 6 (2011), pp.385-391.
Google Scholar
[18]
J. Vera , and Y. Bayazitoglu: Int. J. Heat Mass Transfer Vol. 52 (2009), pp.564-573.
Google Scholar
[19]
A. E. Neeves, and M. H. Birnboim: JOSA B Vol. 6 (1989), pp.787-796.
Google Scholar
[20]
H. Y. Liu, et al: Angew. Chem. Vol. 123 (2011), pp.921-925.
Google Scholar
[21]
G. Wu, et al: J. Am. Chem. Soc. Vol. 130 (2008), pp.8175-8177.
Google Scholar
[22]
S. Soulé, et al: Microporous. Mesoporous. Mater. Vol. 171 (2013), pp.72-77.
Google Scholar
[23]
F. Ratto, et al: Nanomedicine Vol. 5 (2009), pp.143-151.
Google Scholar
[24]
S. Shen, et al: Biomaterials Vol. 34 (2013). pp.3150-3158.
Google Scholar
[25]
P. Zijlstra, P. MR. Paulo, and M. Orrit: Nat. Nanotech Vol. 7 (2012), pp.379-382.
Google Scholar
[26]
A. J. Gormley, et al: Int. J. Pharm. Vol. 415 (2011), pp.315-318.
Google Scholar
[27]
C. J. Murphy, et al: Curr. Opini. Colloid Interface Sci. Vol. 16 (2011), pp.128-134.
Google Scholar
[28]
J. Liu, et al: J. Alloys Compd. Vol. 551 (2012), pp.405-409.
Google Scholar
[29]
J. Y. Chen et al: Nano Lett. Vol. 7 (2007), pp.1318-1322.
Google Scholar
[30]
MS. Yavuz, et al. Nat. Mater. Vol. 8 (2009), pp.935-939.
Google Scholar
[31]
J. Chen, et al: Nano let. Vol. 5 (2005), pp.473-477.
Google Scholar
[32]
H. Cang, et al: Opt. Lett. Vol. 30 (2005), pp.3048-3050.
Google Scholar
[33]
BN. Khlebtsov, et al: J. Quant. Spectrosc. Radiat. Transfer. Vol. 121 (2013), pp.23-29.
Google Scholar
[34]
V. Krishna, et al: Nat. Nanotech Vol. 5 (2010), pp.330-334.
Google Scholar
[35]
S. P. Sherlock, and H. Dai. Nano. Res. Vol. 4 (2011), pp.1248-1260.
Google Scholar
[36]
A. A. Balandin: Nat. Mater. Vol. 10 (2011), pp.569-581.
Google Scholar
[37]
A. K. Geim: Science Vol. 324 (2009), pp.1530-1534.
Google Scholar
[38]
P. Huang, et al: Theranostics Vol. 1 (2011), p.240.
Google Scholar
[39]
Z. G, Cheng, et al: Mat. Rev. Vol. 26 (2012), pp.30-33.
Google Scholar
[40]
L. Wang, et al: Biomaterials Vol. 34 (2012), pp.262-274.
Google Scholar
[41]
UHT. Chou, et al: Mat. Sci. Eng, C Vol. 33(2013), pp.989-995.
Google Scholar
[42]
K. Yang, et al: Biomaterials Vol. 33 (2012), pp.2206-2214.
Google Scholar
[43]
Y. Hashida, et al: J. Controlled Release Vol. 173 (2013), pp.59-66.
Google Scholar
[44]
UTD. Thuy , et al: Catal. Commun. Vol. 44 (2014), pp.62-67.
Google Scholar