Development of Multifunctional Nanomaterials in Phototherapy

Article Preview

Abstract:

Phototherapy as a promising therapy has attracted great attention due to its significant effect on tumor cells with low damage of normal tissue simultaneously, the crucial technology of which is preparation of multifunctional photo-thermal nanomaterials. In this paper , the current research status of the main nanomaterials were reviewed including gold-based nanomaterials and carbon-based nanomaterials for their preparation methods, properties, absorption of near-infrared light and disadvantages. Moreover, the problems and challenges to be solved in this field were also analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-77

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Marites, M. Zhou, and C. Li: Acc. Chem. Res. Vol. 10 (2011), pp.947-956.

Google Scholar

[2] H. Wang, Y.L. Zhao, and G. Nie. : Fron. Mater. Sci. Vol. 7 (2013), pp.118-128.

Google Scholar

[3] G.V. Maltzahn, et al: Nat. Mater. Vol. 10 (2011), pp.545-552.

Google Scholar

[4] A. Joshi, et al: Nat. Nanotech. Vol. 3 (2007), pp.41-45.

Google Scholar

[5] J. Oh, H. Yoon, and JH. Park: Biome. Eng. Lett. Vol. 3 (2013), pp.67-73.

Google Scholar

[6] E. Hutter and JH. Fendler: Adv Mater Vol. 16 (2004), pp.1685-1706.

Google Scholar

[7] E. Ozbay: Science Vol. 311 (2006), pp.189-193.

Google Scholar

[8] W. L . Barnes, A. Dereux, and TW. Ebbesen: Nature Vol. 424. 6950 (2003), pp.824-830.

DOI: 10.1038/nature01937

Google Scholar

[9] J. M Luther, et al: Nature materials Vol. 10 (2011), pp.361-366.

Google Scholar

[10] H. F. Ghaemi, et al: Phys. Rev. Vol. 58 (1998), p.6779.

Google Scholar

[11] P. Pattnaik: Appl. Biochem. Biotechnol Vol. 126 (2005), pp.79-92.

Google Scholar

[12] L. S. Zhang, et al: Mater. Rev. Vol. 26 (2012), pp.5-9.

Google Scholar

[13] D. Peer, et al: Nat. Nanotech. Vol. 2 (2007), pp.751-760.

Google Scholar

[14] X. H. Huang and ES. Mostafa: J. Adv Res. Vol. 1 (2010), pp.13-28.

Google Scholar

[15] C. M. Pitsillides, et al: Biophys. J. Vol. 84 (2003), pp.4023-4032.

Google Scholar

[16] J. You, G. D. Zhang, and L. Chun: ACS Nano. Vol. 4 (2010), pp.1033-1041.

Google Scholar

[17] E. C. Cho, Q. Zhang, and Y. Xia. Nat. Nanotech Vol. 6 (2011), pp.385-391.

Google Scholar

[18] J. Vera , and Y. Bayazitoglu: Int. J. Heat Mass Transfer Vol. 52 (2009), pp.564-573.

Google Scholar

[19] A. E. Neeves, and M. H. Birnboim: JOSA B Vol. 6 (1989), pp.787-796.

Google Scholar

[20] H. Y. Liu, et al: Angew. Chem. Vol. 123 (2011), pp.921-925.

Google Scholar

[21] G. Wu, et al: J. Am. Chem. Soc. Vol. 130 (2008), pp.8175-8177.

Google Scholar

[22] S. Soulé, et al: Microporous. Mesoporous. Mater. Vol. 171 (2013), pp.72-77.

Google Scholar

[23] F. Ratto, et al: Nanomedicine Vol. 5 (2009), pp.143-151.

Google Scholar

[24] S. Shen, et al: Biomaterials Vol. 34 (2013). pp.3150-3158.

Google Scholar

[25] P. Zijlstra, P. MR. Paulo, and M. Orrit: Nat. Nanotech Vol. 7 (2012), pp.379-382.

Google Scholar

[26] A. J. Gormley, et al: Int. J. Pharm. Vol. 415 (2011), pp.315-318.

Google Scholar

[27] C. J. Murphy, et al: Curr. Opini. Colloid Interface Sci. Vol. 16 (2011), pp.128-134.

Google Scholar

[28] J. Liu, et al: J. Alloys Compd. Vol. 551 (2012), pp.405-409.

Google Scholar

[29] J. Y. Chen et al: Nano Lett. Vol. 7 (2007), pp.1318-1322.

Google Scholar

[30] MS. Yavuz, et al. Nat. Mater. Vol. 8 (2009), pp.935-939.

Google Scholar

[31] J. Chen, et al: Nano let. Vol. 5 (2005), pp.473-477.

Google Scholar

[32] H. Cang, et al: Opt. Lett. Vol. 30 (2005), pp.3048-3050.

Google Scholar

[33] BN. Khlebtsov, et al: J. Quant. Spectrosc. Radiat. Transfer. Vol. 121 (2013), pp.23-29.

Google Scholar

[34] V. Krishna, et al: Nat. Nanotech Vol. 5 (2010), pp.330-334.

Google Scholar

[35] S. P. Sherlock, and H. Dai. Nano. Res. Vol. 4 (2011), pp.1248-1260.

Google Scholar

[36] A. A. Balandin: Nat. Mater. Vol. 10 (2011), pp.569-581.

Google Scholar

[37] A. K. Geim: Science Vol. 324 (2009), pp.1530-1534.

Google Scholar

[38] P. Huang, et al: Theranostics Vol. 1 (2011), p.240.

Google Scholar

[39] Z. G, Cheng, et al: Mat. Rev. Vol. 26 (2012), pp.30-33.

Google Scholar

[40] L. Wang, et al: Biomaterials Vol. 34 (2012), pp.262-274.

Google Scholar

[41] UHT. Chou, et al: Mat. Sci. Eng, C Vol. 33(2013), pp.989-995.

Google Scholar

[42] K. Yang, et al: Biomaterials Vol. 33 (2012), pp.2206-2214.

Google Scholar

[43] Y. Hashida, et al: J. Controlled Release Vol. 173 (2013), pp.59-66.

Google Scholar

[44] UTD. Thuy , et al: Catal. Commun. Vol. 44 (2014), pp.62-67.

Google Scholar