Information Entropy-Based Texture Adaptation for 3D Vector Field Visualization

Article Preview

Abstract:

Texture adaptation is a challenging issue in texture-based feature visualization. In order to visualize as more information as we can, this paper presents a texture adaptation technique based on extended information entropy. A new definition of information entropy for 3D vector field is proposed to quantitatively represent the information carried by them. A discussion of results is included to demonstrate our algorithm which leads to a more reasonable visualization results based on texture adaption with information entropy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1631-1634

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Cabral and L.C. Leedom. Imaging Vector Fields Using Line Integral Convolution. In Proc. ACM SIGGRAPH '93, pp.263-270.

Google Scholar

[2] Xu Huaxun, Li Sikun, Zeng Liang and Cai Xun. Feature-based Adaptive Texture Visualization for Vector Field. Science China Information Sciences. Vol. 56, No. 9 (2013), pp.1-14.

DOI: 10.1007/s11432-011-4505-3

Google Scholar

[3] Lijie Xu, Teng-Yok Lee, and Han-Wei Shen , An Information-Theoretic Framework for Flow Visualization. IEEE Transactions on Visualization and Computer Graphics. Vol. 16(6) (2010), pp.1216-1224.

DOI: 10.1109/tvcg.2010.131

Google Scholar

[4] J.J. van Wijk. Spot Noise-Texture Synthesis for Data Visualization. Computer Graphics (Proc. SIGGRAPH '91), Vol. 25 (1991), pp.309-318.

DOI: 10.1145/127719.122751

Google Scholar

[5] M. Falk and D. Weiskopf. Output-Sensitive 3D Line Integral Convolution. IEEE Transactions on visualization and computer graphics, Vo. 14, No. 4(2008), pp.820-834.

DOI: 10.1109/tvcg.2008.25

Google Scholar

[6] J. Jeong and F. Hussain. On the identification of a vortex. Journal of Fluid Mechanics, Vol. 28, No. 5, (1995), pp.69-94.

Google Scholar

[7] S. Stegmaier, U. Rist and T. Ertl. Opening the can of worms: An exploration tool for vortical flows. In Proceedings of IEEE Visualization. (2005) pp.463-470.

DOI: 10.1109/vis.2005.74

Google Scholar

[8] Haller G. An objective definition of a vortex. Journal of Fluid Mechanics, Vol. 525 (2005), p.1–26.

Google Scholar

[9] H. Janicke, A. Wiebel, G. Scheuermann and W. Kollmann. Multifield Visualization Using Local Statistical Complexity. In Proceedings of IEEE Visualization, (2007), pp.1384-1391.

DOI: 10.1109/tvcg.2007.70615

Google Scholar

[10] T. Schafhitzel, J.E. Vollrat, J.P. Gois, D. Weiskoph, A. Castelo and T. Ertl. Topology-based Vortex Core Line Detection for Flow Visualization. Computer Graphics Forum, Vol. 27, No. 3 (2008), pp.1024-1030.

DOI: 10.1111/j.1467-8659.2008.01238.x

Google Scholar

[11] P. Christoph, K. Jens, P. Steffen and H. Hanschristian. Hierarchical Vortex Regions in Swirling Flow. Computer Graphics Forum, Vol. 28, No. 1 (2009), pp.863-870.

DOI: 10.1111/j.1467-8659.2009.01463.x

Google Scholar

[12] Xu Huaxun, Cheng Zhiquan, Ralph Martin and Li Sikun. 3D Flow Features Visualization via Fuzzy Clustering. The Visual Computer. Vol. 27 (2011) pp.441-449.

DOI: 10.1007/s00371-011-0577-8

Google Scholar

[13] Ming-Yuen Chan, Yingcai Wu and Huamin Qu. Quality Enhancement of Direct Volume Rendered Images. Volume Graphics (The Eurographics Association), (2007), pp.25-32.

DOI: 10.1109/tvcg.2009.172

Google Scholar

[14] P. Leopardi. A partition of the unit sphere into regions of equal area and small diameter. Electronic Transactions on Numerical Analysis, Vol. 25 (2006), p.309–327.

Google Scholar