[1]
M. P. Wand, M.C. Jones, Kernel Smoothing. Chapman and Hall, (1995).
Google Scholar
[2]
D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley & Sons, Inc, (1992).
Google Scholar
[3]
E. Parzen, On Estimation of a Probability Density Function and Mode, Annals of Mathematical Statistics, Vol. 33, No. 3, pp.1065-1076. (1962).
DOI: 10.1214/aoms/1177704472
Google Scholar
[4]
M. G. Genton, Classes of Kernels for Machine Learning: A Statistics Perspective, Journal of Machine Learning Research, Vol. 2, pp.299-312, (2001).
Google Scholar
[5]
M. C. Jones , J. S. Marron ,S. J. Sheather, A Brief Survey of Bandwidth Selection for Density Estimation, Journal of the American Statistical Association, Vol. 91, No. 433, pp.401-407, Mar. (1996).
DOI: 10.1080/01621459.1996.10476701
Google Scholar
[6]
C. R. Heathcote, The Integrated Squared Error Estimation of Parameters, Biometrika, Vol. 64, No. 2, pp.255-264, Aug. (1977).
DOI: 10.1093/biomet/64.2.255
Google Scholar
[7]
J. S. Marron, M. P. Wand, Exact Mean Integrated Squared Error, The Annals of Statistics, Vol. 20, No. 2, pp.712-736, Jun. (1992).
DOI: 10.1214/aos/1176348653
Google Scholar
[8]
C. C. Taylor, Bootstrap Choice of the Smoothing Parameter in Kernel Density Estimation, Biometrik, Vol. 76, No. 4, pp.705-712, Dec. (1989).
DOI: 10.1093/biomet/76.4.705
Google Scholar
[9]
A. W. Bowman, An Alternative Method of Cross-Validation for the Smoothing of Density Estimates, Biometrika, Vol. 71, No. 2, pp.353-360, Aug. (1984).
DOI: 10.1093/biomet/71.2.353
Google Scholar
[10]
D. W. Scott, G. R. Terrell, Biased and Unbiased Cross-Validation in Density Estimation, Journal of the American Statistical Association, Vol. 82, No. 400, pp.1131-1146, Dec, (1987).
DOI: 10.1080/01621459.1987.10478550
Google Scholar
[11]
J. N. K. Liu, Y. L. He, X. Z. Wang, Y. X. Hu, A comparative study among different kernel functions in flexible naïve Bayesian classification, In Proceedings of the 2011 International Conference on Machine Learning and Cybernetics, Vol. 2, pp.638-643, (2011).
DOI: 10.1109/icmlc.2011.6016813
Google Scholar
[12]
J. N. K. Liu, Y. L. He, X. Z. Wang, Improving kernel incapability by equivalent probability in flexible naive Bayesian, In Proceedings of the 2012 IEEE International Conference on Fuzzy Systems, pp.1-8, (2012).
DOI: 10.1109/fuzz-ieee.2012.6250811
Google Scholar
[13]
G. H. John, P. Langley, Estimating continuous distributions in Bayesian classifiers, In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, pp.338-345, (1995).
Google Scholar