Estimation of Alpha-Element Abundance Ratios Based on Gaussian Process Regression

Article Preview

Abstract:

In this paper, we present a method to estimate the [α/Fe ]using the spectra from ninth data release of Sloan Digital Sky Survey (SDSS). We first use principal component analysis (PCA) to reduce the dimension of the spectra, and then use Gaussian process regression (GPR) to estimate the [α/Fe ]ratios. The results show that GPR is accurate and efficient in estimating the [α/Fe]ratios. Further analysis shows that using PCA can improve the estimation accuracy of GPR.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1685-1688

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Evan N. Kirby, Puragra Guhathakurta and Christopher Sneden: ApJ Vol. 682 (2008), pp.1217-1233.

Google Scholar

[2] Young Sun Lee et al.: AJ Vol. 141 (2011), pp.1-18.

Google Scholar

[3] Carl Edward Rasmussen, Christopher K. I. Williams: Gaussian Processes for Machine learning (MIT press, London 2006).

Google Scholar

[4] Ahn Christopher P. et al.: ApJs Vol. 203 (2012), pp.1-13.

Google Scholar

[5] Donald G. York et al.: AJ Vol. 120 (2000), pp.1579-1587.

Google Scholar

[6] Young Sun Lee et al.: AJ Vol. 136 (2008), p.2022-(2049).

Google Scholar

[7] I.T. Jolliffe: Principal Component Analysis (Springer, New York 2002).

Google Scholar