[1]
Hemmy, D.C., D.J. David, and G.T. Herman, Three-dimensional reconstruction of craniofacial deformity using computed tomography. Neurosurgery, 1983. 13(5): pp.534-41.
DOI: 10.1097/00006123-198311000-00009
Google Scholar
[2]
Montoya, P. Modern imaging of craniofacial malformations]. in Annales de chirurgie plastique et esthétique. (1997).
Google Scholar
[3]
Sarver, D. and M. Johnston, Orthognathic surgery and aesthetics: planning treatment to achieve functional and aesthetic goals. Journal of Orthodontics, 1993. 20(2): pp.93-100.
DOI: 10.1179/bjo.20.2.93
Google Scholar
[4]
Gossett, C.B., et al., Prediction accuracy of computer-assisted surgical visual treatment objectives as compared with conventional visual treatment objectives. Journal of oral and maxillofacial surgery, 2005. 63(5): pp.609-617.
DOI: 10.1016/j.joms.2005.01.004
Google Scholar
[5]
Chen, H. and S. Li, Application of computer medical science virtual surgery in the plastic surgery. Chinese Journal of Aesthetic Medicine, 2006. 5(15): pp.600-602.
Google Scholar
[6]
Xia, J., et al., Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy. International journal of oral and maxillofacial surgery, 2000. 29(1): pp.11-17.
DOI: 10.1016/s0901-5027(00)80116-2
Google Scholar
[7]
Sohmura, T., et al., Prototype of simulation of orthognathic surgery using a virtual reality haptic device. International journal of oral and maxillofacial surgery, 2004. 33(8): pp.740-750.
DOI: 10.1016/s0901-5027(04)00095-5
Google Scholar
[8]
Uechi, J., et al., A novel method for the 3-dimensional simulation of orthognathic surgery by using a multimodal image-fusion technique. American journal of orthodontics and dentofacial orthopedics, 2006. 130(6): pp.786-798.
DOI: 10.1016/j.ajodo.2006.03.025
Google Scholar
[9]
Long, S. and S. Liu, Research on virtual osteotomy in cranio-maxillofacial surgical planning. JOURNAL-ZHEJIANG UNIVERSITY OF TECHNOLOGY, 2006. 34(5): p.534.
Google Scholar
[10]
Heiland, M., et al. Realistic haptic interaction for computer simulation of dental surgery. in International Congress Series. 2004. Elsevier.
Google Scholar
[11]
Yu, H., Study on craniomaxillofacial three-dimensional photo-realistic modeling combined with surgical simulation and prediction. Doctoral Thesis, 2009: p. Shanghai Jiao Tong University, Shanghai.
Google Scholar
[12]
Berkowitz, S. and J. Cuzzi, Biostereometric analysis of surgically corrected abnormal faces. American Journal of Orthodontics, 1977. 72(5): pp.526-538.
DOI: 10.1016/0002-9416(77)90021-5
Google Scholar
[13]
Ras, F., et al., Quantification of facial morphology using stereophotogrammetry-demonstration of a new concept. J Dent, 1996. 24(5): pp.369-74.
Google Scholar
[14]
Ferrario, V.F., et al., A three-dimensional computerized mesh diagram analysis and its application in soft tissue facial morphometry. Am J Orthod Dentofacial Orthop, 1998. 114(4): pp.404-13.
DOI: 10.1016/s0889-5406(98)70185-4
Google Scholar
[15]
Morris, D.O., H.M. Illing, and R.T. Lee, A prospective evaluation of Bass, Bionator and Twin Block appliances. Part II-The soft tissues. Eur J Orthod, 1998. 20(6): pp.663-84.
DOI: 10.1093/ejo/20.5.501
Google Scholar
[16]
Altobelli, D.E., et al., Computer-assisted three-dimensional planning in craniofacial surgery. Plast Reconstr Surg, 1993. 92(4): pp.576-85; discussion 586-7.
Google Scholar
[17]
Keeve, E., et al., Deformable modeling of facial tissue for craniofacial surgery simulation. Comput Aided Surg, 1998. 3(5): pp.228-38.
DOI: 10.3109/10929089809149844
Google Scholar
[18]
Techalertpaisarn, P. and T. Kuroda, Three-dimensional computer-graphic demonstration of facial soft tissue changes in mandibular prognathic patients after mandibular sagittal ramus osteotomy. Int J Adult Orthodon Orthognath Surg, 1998. 13(3): pp.217-25.
Google Scholar
[19]
Fung, Y.C., Biomechanics Mechanical Properties of Living Tissues. Springer, 1993. Second Edition.
Google Scholar
[20]
Wang, W.H., et al., Three-dimensional virtual technology in reconstruction of mandibular defect including condyle using double-barrel vascularized fibula flap, Craniomaxillofac Surg, 2013. 41(5): pp.417-22.
DOI: 10.1016/j.jcms.2012.11.008
Google Scholar
[21]
Remmler, D., et al., Presurgical finite element analysis from routine computed tomography studies for craniofacial distraction: II. An engineering prediction model for gradual correction of asymmetric skull deformities. Plastic and reconstructive surgery, 1998. 102(5): pp.1395-1404.
DOI: 10.1097/00006534-199810000-00011
Google Scholar
[22]
Chabanas, M., V. Luboz, and Y. Payan, Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Med Image Anal, 2003. 7(2): pp.131-51.
DOI: 10.1016/s1361-8415(02)00108-1
Google Scholar
[23]
Kober, C., et al., [Numerical simulation (FEM) of the human mandible: validation of the function of the masticatory muscles]. Biomedizinische Technik. Biomedical engineering, 2000. 45(7-8): p.199.
DOI: 10.1515/bmte.2000.45.7-8.199
Google Scholar