Convergence of Matrix Relaxed Multisplitting USAOR Method

Article Preview

Abstract:

Relaxed technique is one of techniques for improving convergent rate of splitting iterative methods. In this paper,we study the convergence of both local relaxed parallel multisplitting method associated with USAOR multisplitting for solving a large sparse linear system whose coefficient matrix is an H-matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1922-1925

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Z. Bai, On the convergence domains of the matrix multisplitting relaxed methods for Linear Systems, Applied Mathematics, Journal of Chinese University, 13b(1)(1998), 45-52.

Google Scholar

[2] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, (1979).

Google Scholar

[3] R. Bru, V. Migall'on, J. Penad'es and D.B. Szyld, Parallel, synchronous and asynchronous two- stage multisplitting methods, Electron. Trans. Numer. Anal., 3(1995), 24-38.

Google Scholar

[4] Z. H. Cao, Zhong-Yun Lin, Convergence of relaxed parallel multisplitting methods with different weighting schemes. Applied Mathematics and Computation, 106(1996) 181-196.

DOI: 10.1016/s0096-3003(98)10120-0

Google Scholar

[5] Z. H. Cao, On the convergence of nested stationary iterative methods, Linear Algebra and Its Applications, 221 (1995) 159-170.

DOI: 10.1016/0024-3795(93)00239-v

Google Scholar

[6] D. W. Chang, Convergence analysis of the parallel multisplitting TOR methods, Journal of Computational and Applied Mathematics, 72(1996) 169-177.

DOI: 10.1016/0377-0427(95)00270-7

Google Scholar

[7] A. Frommer, G. Mayer, Convergence of relaxed parallel multisplitting methods, Linear Algebra and Its Applications, 119 (1989) 141-152.

DOI: 10.1016/0024-3795(89)90074-8

Google Scholar

[8] A. Frommer, G. Mayer, On the theory and practice of multisplitting methods in parallel computation, Computing, 49 (1992) 62-74.

DOI: 10.1007/bf02238650

Google Scholar

[9] T. X. Gu, X. P. Liu, L. J. Shen, Relaxed parallel two-stage multisplitting methods, International Journal of Computer Mathematics, 75 (2000) 351-363.

DOI: 10.1080/00207160008804990

Google Scholar

[10] T. X. Gu, X. P. Liu, Parallel two-stage multisplitting iterative methods, International Journal of Computer Mathematics, 20(2) (1998) 153-166.

Google Scholar

[11] J.X. Kuang, J. Li, A survey of the AOR and the TOR methods, J. Comput. Appl. Math., 24 (1988) 3-12.

Google Scholar

[12] D. P. OLeary, R. E. White, Multi-splittings of matrices and parallel solution of linear systems, SIAM Journal on Algebraic and Discrete Mathematics, 6 (1985)630-640.

DOI: 10.1137/0606062

Google Scholar

[13] Y. Z. Song, Convergence of parallel multisplitting methods, Linear Algebra and Its Applications, 50 (1994) 213-232.

Google Scholar

[14] R. S. Varga, Matrix Iterative Analysis, Springer-Verlag, New York, (2000).

Google Scholar

[15] D. R. Wang, On the convergence of parallel multisplitting AOR algorithm, Linear Algebra and Its Applications, 154/156 (1991) 473-486.

DOI: 10.1016/0024-3795(91)90390-i

Google Scholar