[1]
Kumar K AnooP, Arvind Manoj, Divakar K, RajagoPal R. A novel time-frequency approach for acceleration estimation from a single PRI". Fifth Int. Sym. Signal Proeessing and it, s applications, ISSPA 99, Brisbane Australia , 1999, p.531–534.
DOI: 10.1109/isspa.1999.815727
Google Scholar
[2]
Thayaparan T, YasotharanA. Anovel approach forthe Wigner distribution formulation of the optimum detection problem for a discrete-time chirp signal[J]. Defence Research Establishment Ottawa, 2001, 14(10): 23-27.
Google Scholar
[3]
WANG Min-sheng, Chan A K. Linear frequency-modulated signal detection using radon-ambiguity transform [J]. IEEE Trans Signal Processing, 1998, 46(3): 571-586.
DOI: 10.1109/78.661326
Google Scholar
[4]
Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of Royal Society of London, 1998(A454): 903-995.
DOI: 10.1098/rspa.1998.0193
Google Scholar
[5]
Wu Z, Huang N.E. Ensemble Empirical Mode Decomposition: a noise assisted data analysis method. Adv. Adapt. Data Anal., 2009, 1(1): 1-41.
DOI: 10.1142/s1793536909000047
Google Scholar
[6]
Cui Hua. New method for instantaneous frequency estimations of LFM signals [J]. Application Research of Computers, 2008, 25(8): 2532-2533, 2536.
Google Scholar
[7]
Zhen Haochuan, Shen Liran, Zhang Xiaolin. HHT-Based linear frequency modulated signal analysis and parameter estimation[J]. Applied Science and Technology, 2012, 39(3).
Google Scholar
[8]
I. Daubechies and J. Lu and H. T. Wu, Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool, Journal of Applied and Computational Harmonic Analysis, vol. 30, No. 2, p.243–261, (2011).
DOI: 10.1016/j.acha.2010.08.002
Google Scholar
[9]
J. Gilles. Empirical wavelet transform. Signal Processing, IEEE Transactions, vol. 61, pp.3999-4010, (2013).
DOI: 10.1109/tsp.2013.2265222
Google Scholar
[10]
Jia Shuyi, Wa Guohong ect. Acceleration and Velocity Estimation of Maneuvering Targets Based on Sparse and Redundant Representantions.
Google Scholar
[11]
T.Y. Hou and Z. Shi, Adaptive data analysis via sparse time-frequency representation[J]. Advances in Adaptive Data Analysis, vol. 2, p.1–28, (2011).
DOI: 10.1142/s1793536911000647
Google Scholar
[12]
T.Y. Hou and Z. Shi, Data-driven time-frequency analysis. Appl. Comput. Harmon. Anal. 35, p.284–308, (2013).
Google Scholar