Multi-Frame Super-Resolution Reconstruction Algorithm Based on Diffusion Tensor Regularization Term

Article Preview

Abstract:

This paper presents a multi-frame super-resolution (SR) reconstruction algorithm based on diffusion tensor regularization term. Firstly, L1-norm structure is used as data fidelity term, anisotropic diffusion equation with directional smooth characteristics is introduced as a prior knowledge to optimize reconstruction result. Secondly, combined with shock filter, SR reconstruction energy functional is established. Finally, Euler-Lagrange equation based on nonlinear diffusion model is exported. Simulation results validate that the proposed algorithm enhances image edges and suppresses noise effectively, which proves better robustness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2828-2832

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Nguyen, P. Milanfar, and G. H. Golub, A computationally efficient image super resolution algorithm, IEEE Trans. Image Processing, vol. 10, p.573–583, Apr. (2001).

DOI: 10.1109/83.913592

Google Scholar

[2] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, vol. 60, p.259–268, Nov. (1992).

DOI: 10.1016/0167-2789(92)90242-f

Google Scholar

[3] Farsiu S, Robinson M D. Fast and robust multi-frame super resolution, IEEE Transaction on Image Processing, 2004, 13(10): 1327-1344.

DOI: 10.1109/tip.2004.834669

Google Scholar

[4] X.L. Li, Y.T. Hu, X.B. Gao, and D.C. Tao, A multi-frame image super resolution method, Signal Processing, vol. 90, no. 2, p.405–414, Feb. (2010).

DOI: 10.1016/j.sigpro.2009.05.028

Google Scholar

[5] P. Perona, J. Malik. Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on PAMI, 1990, 12(7): 629~639.

DOI: 10.1109/34.56205

Google Scholar

[6] J. Weickert. Scale-space properties of nonlinear diffusion filtering with a diffusion tensor, Report No. 110, Laboratory of Techno mathematics, University of Kaiserslautern, P. O. Box 3049, 67653 Kaiserslautern, Germany, (1994).

Google Scholar

[7] Weichert J. Coherence-enhancing diffusion filtering, International Journal of Computer Vision, 1999, 31(2/3) : 111-127.

Google Scholar

[8] S. Osher, L.I. Rudin. Feature-oriented image enhancement using shock filters, SIAM Journal of Numerical Analysis, 1990, 27(4): 919~940.

DOI: 10.1137/0727053

Google Scholar

[9] D. Tschumperlé. PDE's based regularization of multivalued images and applications, Université de Nice-Sophia Antipolis, (2002).

Google Scholar

[10] Weickert J, Scharr H. A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance, Journal of Visual Communication and Image Representation, 2002, 13( 1/ 2) : 103-118.

DOI: 10.1006/jvci.2001.0495

Google Scholar