Exact Analysis of Optical Precursor in Lossless Plasma

Article Preview

Abstract:

When an electromagnetic field propagates through a linear but dispersive medium, the front edge (the launching fringe of the waveform where the field is first turned on) propagates precisely at the speed of light in vacuum by first timing on t1=tfront =(z/c)and the main signal (the main part of the field) follows up with group velocity which is characterized by the frequency-dependent refractive index of medium by second timing on t2=tgroup=(z/vgroup)=[n(φ)z/c] .The distinct wave-packets progress from tfront to tgroup (i.e. from the front-edge-timing to the main-signal-starting timing) are well known as optical precursors. It was believed that precursors are an ultra-fast phenomena, persisting only for a few optical cycles, and that they have an exceedingly small amplitude and two different kinds of spike-type wave-packet (i.e. Sommerfeld precursor and Brillouin forerunner). Both exact wave shape for electromagnetic wave while it goes into a linear time-invariant, lossless plasma system is reported.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

405-409

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Brillouin, and A. Sommerfeld. Wave propagation and group velocity, Academic Press New York, Vol. 8, p.154. (1960).

Google Scholar

[2] P. Wyns, D. P. Foty, and K. E. Oughstun. Numerical analysis of the precursor fields in linear dispersive pulse propagation., J. Opt. Soc. Amer. A 6(9): 1421-1429. (1989).

DOI: 10.1364/josaa.6.001421

Google Scholar

[3] A. Ciarkowski, On Sommerfeld precursor in a Lorentz medium., arXiv preprint physics/0412065. (2004).

Google Scholar

[4] K. E. Oughstun, , et al. Optical precursors in the singular and weak dispersion limits., J. Opt. Soc. Amer. B 27(8): 1664-1670. (2010).

Google Scholar

[5] B. Macke, and B. Ségard. Simple asymptotic forms for Sommerfeld and Brillouin precursors., Phys. Rev. A 86(1): 013837. (2012).

DOI: 10.1103/physreva.86.013837

Google Scholar

[6] B. Macke, and B. Ségard. From Sommerfeld and Brillouin forerunners to optical precursors., Phys. Rev. A 87(4): 043830. (2013).

DOI: 10.1103/physreva.87.043830

Google Scholar

[7] R. Uitham, and B. Hoenders. The Sommerfeld precursor in photonic crystals., Opt. Commun. 262(2): 211-219. (2006).

DOI: 10.1016/j.optcom.2005.12.077

Google Scholar

[8] R. Uitham, and B. Hoenders. The electromagnetic Brillouin precursor in one-dimensional photonic crystals., Opt. Commun. 281(23): 5910-5918. (2008).

DOI: 10.1016/j.optcom.2008.07.064

Google Scholar

[9] H. Jeong, Direct observation of optical precursors in a cold potassium gas, Doctral desertation, Department of Physics, Graduate School of Duke University. (2006).

Google Scholar

[10] B. Macke, and B. Ségard. Optical precursors in transparent media., Phys. Rev. A 80(1): 011803. (2009).

Google Scholar

[11] D. Wei, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and Shengwang Du. Optical precursors with electromagnetically induced transparency in cold atoms., Phys. Rev. Lett. 103(9): 093602. (2009).

DOI: 10.1103/physrevlett.103.093602

Google Scholar

[12] B. Macke and B. Ségard. Optical precursors with self-induced transparency., Phys. Rev. A 81(1): 015803. (2010).

DOI: 10.1103/physreva.81.015803

Google Scholar

[13] G. A. Campbell, and R. M. Foster, Fourier integrals for practical applications., New York, NY : Van Nostrand, p.180 (1951).

Google Scholar