[1]
Q. Kong, Interval criteria for oscillation of second-order linear ordinary differential equations,J. Math. Appl. 229(1999)258-270.
DOI: 10.1006/jmaa.1998.6159
Google Scholar
[2]
CH.G. Philos, Oscillation theorems for linear differential equations of second-order, Arch. Math. (Basel)53(1989)482-492.
DOI: 10.1007/bf01324723
Google Scholar
[3]
Yuan Gong Sun, New kamenev-type oscillation criteria for oscillation of second-order non-linear differential equations with damping,J. Math. Anal. Appl. 291(2004)341-351.
DOI: 10.1016/j.jmaa.2003.11.008
Google Scholar
[4]
J. Sugie,N. Yamaoka, Oscillation of solutions of second-order nonlinear self-adjiont differential equations,J. Math. Anal. Appl. 291(2004)387-405.
DOI: 10.1016/j.jmaa.2003.11.027
Google Scholar
[5]
F. Meng and J. Wang, Oscillation criteria for second order quasi-linear neutral delay differ-ential equations ,J. Indones. Math. Soc(MIHMI)vol. 10 No. 2(2004), pp.61-75.
Google Scholar
[6]
J.S.W. Wong, Oscillation criteria for a forced second order linear di®erential equation, J. Math. Anal. Appl., 231(1999), 235-340.
Google Scholar
[7]
Ch.G. Philos, Oscillation theorems for linear di®erential equations of second order, Arch. Math. (Basel), 53(1989), 483-492.
DOI: 10.1007/bf01324723
Google Scholar
[8]
X. Wang, Y. Hong, J. Huang and Z. Jiang, A distributed control approach to a robust output regulation problem for multi-agent linear systems, IEEE Trans. Automatic Control, 55(2010), 2891-2895.
DOI: 10.1109/tac.2010.2076250
Google Scholar
[9]
Q. Kong, Interval criteria for oscillation of second order linear differential equations, J. Math. Anal. Appl., 229(1999), 258-270.
DOI: 10.1006/jmaa.1998.6159
Google Scholar
[10]
A. Elbert, Oscillation/nonoscillation for linear second order di®erential equation, J. Math. Anal. Appl., 226(1998), 207-219.
Google Scholar
[11]
M.A. Ei-Sayed, An oscillation criteria for a forced second-order linear di®erential equation, Proc. Amer. Math. Soc., 118(1993), 813-817.
DOI: 10.1090/s0002-9939-1993-1154243-9
Google Scholar
[12]
Q. Yang, Interval oscillation criteria for a forced second order nonlinear ordinary di®erential equations with oscillatory potential, App. Math. Comput., 135(2003), 49-64.
DOI: 10.1016/s0096-3003(01)00307-1
Google Scholar