[1]
L. M. Crain, Automated Coin Grading System, 52241761993.
Google Scholar
[2]
R. M. Haddock, Self-centering Loading, Indexing, and Flipping Mechanism for Coinage and Coin Analysis, 7967126 B22011.
Google Scholar
[3]
J. J. Kernz, Apparatus and Method for Accessing a Coin Image Compilation, 6643666 B12003.
Google Scholar
[4]
M. Nolle, H. Penz, M. Rubik, K. Mayer, I. Hollander, and R. Granec, Dagobert – A New Coin Recognition and Sorting System, in Proceedings of the 7th International Conference on Digital Image Computing: Techniques and Applications, (2003).
Google Scholar
[5]
H. A. Merton, Method and System for Objectively Grading and Identifying Coins, 48993921990.
Google Scholar
[6]
H. A. Merton, J. R. Diefenthal, W. D. Radigam, S. Sengupta, and E. J. Lenaz, Systems for Illuminating and Evaluating Surfaces, (1992).
Google Scholar
[7]
O. Marques, Practical Image and Video Processing Using MATLAB. New Jersey: John Wiley & Sons, Inc., (2011), p.477.
Google Scholar
[8]
A. Halder and A. Dasgupta, Image Segmentation Using Rough Set Based K-means Algorithm, in CUBE, (2012), p.53–58.
DOI: 10.1145/2381716.2381728
Google Scholar
[9]
M. Hauschild, S. Bhatia, and M. Pelikan, Image Segmentation using a Genetic Algorithm and Hierarchical Local Search, in GECCO, (2012), p.633–639.
DOI: 10.1145/2330163.2330253
Google Scholar
[10]
A. S. Tamboli and M. A. Shah, A Generic Structure of Object Classification using Genetic Programming, in 2011 International Conference on Communication Systems and Network Technologies, (2011), p.723–728.
DOI: 10.1109/csnt.2011.154
Google Scholar
[11]
K. Wei, B. He, F. Wang, T. Zhang, and Q. Ding, A Novel Method for Classification of Ancient Coins Based on Image Textures, in Second Workshop on Digital Media and its Application in Museum & Heritages (DMAMH 2007), (2007), no. 1, p.63–66.
DOI: 10.1109/dmamh.2007.13
Google Scholar
[12]
H. Chen, Chinese Coin Recognition Based on Unwrapped Image and Rotation Invariant Template Matching, in 2010 Third International Conference on Intelligent Networks and Intelligent Systems, (2010), p.5–7.
DOI: 10.1109/icinis.2010.10
Google Scholar
[13]
C. Pornpanomchai, J. Wongkorsub, T. Pornaudomdaj, and P. Vessawasdi, Buddhist Amulet Recognition System (BARS), in 2010 Second International Conference on Computer and Network Technology, (2010), p.495–499.
DOI: 10.1109/iccnt.2010.128
Google Scholar
[14]
M. (Vienna U. of T. Kampel, R. (Austrian R. C. Huber-Mörk, and M. (Vienna U. of T. Zaharieva, Image-Based Retrieval and Identification of Ancient Coins, IEEE Intell. Syst., p.26–34, (2009).
DOI: 10.1109/mis.2009.29
Google Scholar
[15]
M. Reisert, O. Ronneberger, and H. Burkhardt, A fast and reliable coin recognition system, in Proceedings of the 29th DAGM Conference on Pattern Recognition, (2007), p.415–424.
DOI: 10.1007/978-3-540-74936-3_42
Google Scholar
[16]
L. J. P. van der Maaten and P. J. Boon, Reliable Classification of Partially Occluded Coins, in Proceedings of the 2007 MUSCLE CIS Workshop, (2007).
Google Scholar
[17]
C. Chen, S. Zhang, and Y. Chen, A Coin Recognition System with Rotation Invariance, in 2010 International Conference on Machine Vision and Human-machine Interface, (2010), p.755–757.
DOI: 10.1109/mvhi.2010.60
Google Scholar
[18]
M. Nölle, B. Jonsson, and M. Rubik, Coin Images Seibersdorf - Benchmark, Smart Syst. High Perform. Image Process., p.1–8, (2005).
Google Scholar