[1]
R. David, H. Alla. Continuous Petri Nets, in Proceedings of the 8th Europeab Workshop on Application and Theory of Petri Nets(Saragossa, Spain), (1987), pp.275-294.
DOI: 10.1007/978-3-642-10669-9_6
Google Scholar
[2]
David, H. Alla. On Hybrid Petri Nets. Discrete Events Dynamic Systems, in Theory and Application,Vol. 11 No. 1(2001), pp.9-40.
Google Scholar
[3]
J. LE Ball, H. Alla, R. David. Asymptotic Continuous Petri Nets. Discrete Event Dynamic Systems, in Theory and Applications. Vol. (2)(1993), pp.235-263.
DOI: 10.1007/bf01797160
Google Scholar
[4]
F. Balduzzi, A. Giua and G. Menga. First-Order Hybrid Petri Nets: a Model for Optimitation and Control, In IEEE Transactions On Robotics And Automation. Vol. 16 No. 14(2000), pp.382-399.
DOI: 10.1109/70.864231
Google Scholar
[5]
T. Gu, and P.A. Bahri. A Survey of Petri Net Applications in Batch Processes, in Computer in Industry, Vol. 47 No. 1 (2002), 99-111.
DOI: 10.1016/s0166-3615(01)00142-7
Google Scholar
[6]
T. Gu, and P.A. Bahri. Development of Hybrid Petri Net for Scheduling of Mixed Batch/Continuous Process., in Proceedings of the 15th IFAC World Congress on Automatic Control(2002).
Google Scholar
[7]
Tianlong Gu, Rongsheng Dong. Novel Continuous Model to Approximate Time Petri Nets: Modeling And Analysis, in Journal of Application Mathematic and Computer Science, Vol. 15 No. 1 (2005) , pp.141-150.
Google Scholar
[8]
L.A. Cortes, P. Eles. Verification of Embedded Systems using a Petri Net based Representation, in 13th International Symposium on Systems Synthesis(ISSS'2000), (2000), pp.149-155.
DOI: 10.1109/isss.2000.874042
Google Scholar
[9]
D. Lime, O.H. Roux. State Class Timed Automaton of a Timed Petri Nets, in PNPM'03. IEEE Computer Society(2003).
DOI: 10.1109/pnpm.2003.1231549
Google Scholar
[10]
F. Cassez, O.H. Roux. Structral Translation From Time Petri Nets to Tined Automata, in Journal of Software and Systems, Vol. 79 No. 10 (2005), pp.1456-1468.
DOI: 10.1016/j.jss.2005.12.021
Google Scholar
[11]
Information on http: /www. ibisc. uni-evry. fr/Vie/TR.
Google Scholar
[12]
LIAO Weizhi, GU Tianlong. Novel Analysis Method for Reachability of Hybrid Petri Nets, in Journal of Chinese Computer Systems , Vol. 30 No. 8 (2009), pp.1651-1655.
Google Scholar
[13]
Liao Wei-Zhi, Gu Tian-Long. Effective Conflict of Interval Speed Continuous Petri Net, in. Computer science(in Chinses), Vol. 33 No. 10 (2006), pp.221-224.
Google Scholar
[14]
R. Alur, L. Fix and Henzinger T. Event-clock Automata: A Determinizable Class of Timed Automata, in Theoretical Computer Science, Vol. 211 No. 1-2 (1999), pp.253-273.
DOI: 10.1016/s0304-3975(97)00173-4
Google Scholar